第2回広島市下水道工事事故調査検討委員会

説明資料

令和7年3月28日

1. 追加0	の土質調査(圧密試験)等について	
1.1	土質調査結果	1
1.2	陥没拡大要因の検討	9
1.3	陥没メカニズムの推定	14
2. 地盤》	沈下の状況について	
2.1	地盤沈下の発生状況と予測	19
2.2	地盤沈下対策	20
3.シーノ	レドマシン内部の調査方法について	
3.1	シールドマシンの止水工法の選定	22
3.2	シールドマシンの止水領域について	24
3.3	シールドマシン内部の調査方法	25
4. その個	也の調査及び検討の結果について	
4.1	シールドマシンについて	26
4.2	シールド出水原因の推定のための調査・検討結果	27
4.3	トンネル内流入水の水質について	27
4.4	トンネル内異常出水の検討	28
4.5	シールドマシンの姿勢	34
4.6	シールド事故事例調査	35
4.7	事故時の住民ヒアリング調査	36
4.8	施工管理データの検証	37
4.9	シールドマシンの品質管理状況調査	44
4.10	O セグメントの品質管理状況調査	47

1. 追加の土質調査(圧密試験)等について

1. 1 土質調査結果

事故位置で実施した土質調査の結果を以降に示す。地質調査は、その目的に応じて下表の調査を行った。

	<u>表 1.1 土質調査</u> :	項目		
目的	調査	詳細		
地盤変化の確認	ボーリング調査	地層構成図の作成		
	エンパソル(追加)	陥没部周辺の地層構成の詳細確認		
		地層構成図の補完		
地層の乱れ状況	室内土質試験	土の物理・力学・圧密特性を把握		
の確認	C14 年代測定(追加)	陥没部の順序の乱れを確認		
	繰返し一面せん断試験(追加)	陥没部の残留強度を確認して下部		
		粘性土の変形後の性状を把握		
緩み範囲の詳細	S波検層	緩み範囲の深度的な把握		
確認	音響トモグラフィー	緩み範囲の面的な把握		
	微動アレイ	地盤の緩み域の分布把握		
地中物の確認	表面波探查	杭·残置構造物の把握		
	ウォーターホールズ			

1.1.1 地盤変化の確認

第1回委員会で報告したボーリング調査による地層構成図について、陥没部周辺の各層の変化点を密に 確認するためにエンパソルによる詳細調査を実施した。

(1)エンパソル

本調査は、削孔機に取付けたセンサーを用いて削孔時にデータを収集し、データ解析(LT 値*)により 地盤硬軟を連続的に判定するものある。

※LT 値:推進荷重(Load)と削孔時間(TIME)からなるパラメータで、地盤の相対的な強度を示し地盤が硬いほど大き くなる傾向があり、N値等と比較的相関性が良い。

シールド前面部の No.4 孔を中心に 1m ピッチで縦断・横断方向に実施し、ボーリング調査結果により以 下のように地層構成図を補完した。

以下に縦断および横断(2断面)の地層構成図見直し結果を示す。結果、ボーリング結果のみの地層構 成図と比べて、地層の落ち込み範囲を詳細に再評価することができ、シールドマシンの中央下部に向かっ た地層の急激な落ち込みが確認できた。

10.00

0.00

-10.00

-20.00

-30.00

C-C断面図(シールドマシン前方横断図)

図1.3 地層構成図の見直し結果

1.1.2 地層の乱れ状況の確認

陥没部の地層の乱れ状況を以下の試験により確認した。

(1)室内土質試験

室内土質試験結果をもとに以下のことを確認した。

1)粘性土層内の砂分の確認

粒度試験結果による各層の粒度分布について以下に示す。

・沖積上部粘性土:Ac1-1

基本的には、細粒分含有率 75%以上(平均値 79.0%) であり、砂分は少ない。

但し、一部、試料で細粒分含有率が30%~70%と粗粒分(礫分・砂分)が優勢または多くなる結果 となった。深度と粗粒分の明確な関係は見られない。

・沖積下部粘性土:Ac1-2

細粒分含有率は、約85%以上(平均値94.5%)の結果であり、砂分は少ない。

以上より、粘性土層の砂分含有率は低いと判断した。

図 1.4 ボーリング位置図(陥没部周辺・全体図)

表 1.2 粒度試験結果一覧表

						粒度組成													
		礫ヶ	合有率(%)	砂分	含有率((%)	シルト	~ 分含有率	(%)	粘土	分含有率	(%)	細粒	分含有率	(%)	20%i	通過粒径((mm)
地層名	記号	最小値	最大値	平均值	最小値	最大値	平均值	最小値	最大値	平均值	最小値	最大値	平均值	最小値	最大値	平均值	最小値	最大値	平均值
盛土・埋立土	В	0.0	84. 2	9.8	10.7	93.8	75.3	1.9	26.5	11.7	2.8	20.3	7.0	1.9	41.1	14.9	0.005	3.190	0. 331
沖積砂質土	As1	0.0	34.0	3.9	38.5	95.2	82.4	1.3	41.3	9.9	2.5	22.6	7.6	2.0	61.5	13.7	0.004	0. 391	0.180
沖積上部粘性土	Ac1-1	0.0	0.2	0.0	0.9	67.9	21.0	19.3	66.6	51.2	12.8	42.2	27.8	32.1	99.1	79.0	0.000	0.017	0.003
沖積火山灰土	At																		
沖積下部粘性土	Ac1-2	0.0	0.5	0.1	1.3	14.6	5.3	35.1	52.5	44.5	42.8	56.7	50. 2	84.9	98.7	94.6	0.000	0.000	0.000
沖積砂質土(基底層)	As2	0.0	42.3	14.3	7.9	81.8	58.2	6.8	53.1	16.6	4.0	38.4	13.9	7.0	91.5	27.5	0.000	0.356	0.083
洪積砂礫	Dg	35.0	86.8	69.8	11.8	57.6	26.1	1.4	7.4	4.1				1.4	7.4	4.1	0.308	4. 692	1.537

②N 値の変化

陥没部については以下の3種に分類して、N値の変化を 比較した。

> 最陥没部 (No. 4) 陥没部 (No.5、6) 陥没部周辺(その他)

- ・最陥没部の No.4 地点では他地点に比較して明らかに N値が低くなり、ほぼ0を示す。
- ・ 陥没部 (No. 5、6) においても粘性土層で若干の N 値 低下がみられる。
- •No.5地点では、陥没の影響によるものかは不明確で あるが、洪積砂礫層のN値が6と非常に小さい部分 が確認されている。

以上より、陥没の影響によりN値が低下傾向を示してい ることを確認した。

③圧密定数の変化

最陥没部(No.1 (No.4別孔))と陥没部周辺(No.2)の圧密試験結果を比較した。

- •No.1 以外の沖積上部粘性土層と沖積下部粘性土層の比較では、過圧密比(OCR)に大きな差はみられ ない。
- ・全体的には OCR が 1.12~1.76 を示し、若干の過圧密状態となっている
- ・最陥没部の No.1 地点については、圧密降伏応力 pc が有効土被り応力 σ'を大きく下回っている。こ の状態は下部ほど顕著であり、最上部(GL-16m付近)では pc 値の低下がみられていない。

抽屆夕	Bor No	深度	単位体積重量(kN/m3)		有効土被り	圧密降伏	OCR
地信石	DOLINO	GL-m	γt	γ sat	応力 σ'	応力	UCIN
	1	16.45	16	6	184.15	268	1.46
	Ţ	21.45	16	6	214.15	182	0.85
	2	15.43	16	6	171.43	265	1.55
Ac1-1	3	16.40	16	6	157.80	216	1.37
	7	16.45	16	6	167.15	187	1.12
	12	17.40	16	6	141.00	204	1.45
	19	12.35	16	6	126.20	222	1.76
	1	24.45	15	5	231.25	131	0.57
A c1 2	2	21.33	15	5	203.95	286	1.40
Ac1-2	3	20.40	15	5	179.87	232	1.29
	19	19.35	15	5	166.50	249	1.50

表1.3 圧密試験結果による過圧密比一覧

以上より、最陥没部では粘性土が大きく乱されており、強度が低下しているものと判断した。土構造が 破壊されることで圧密降伏応力が低下し、過圧密から圧密未了状態に移行することで沈下が生じやすい状 態に変化しているものと推測される。

図 1.6 有効土被り応力 σ' と圧密降伏応力 pc の比較

(2)C14年代測定(放射性炭素年代測定)

本調査は、各深度で採取した有機物の年代を測定することで、堆積年代の順序に乱れが有るかを確認す るものである。炭素の放射性同位体である炭素14(C14)を利用して、試料中の炭素14の残存量を測定す ることで、炭素14の減少率から試料の年代を推定する。ボーリングNo.4とNo.3の孔の試料を用いて実 施した。以下に結果一覧を示す。

表 1.4 測定結果一覧

サンプル名	試料	暦年代較正
No4_26.63m	貝殻	(95.4%)7519 - 7245 cal BP (5569 - 5295 cal BC)
No4_29.75m	貝殻	(95.4%)8317 - 8017 cal BP (6367 - 6067 cal BC)
No4_32.90-33.00m	粘土	(94.3%)12770 - 12722 cal BP (10820 - 10772 cal BC)
No4_33.50-33.68m	貝殻	(95.4%)8208 - 7927 cal BP (6258 - 5977 cal BC)
No3_19.60m	貝殻	(95.4%)7519 - 7245 cal BP (5569 - 5295 cal BC)
No3_20.80m	貝殻	(95.4%)8479 - 8189 cal BP (6529 - 6239 cal BC)
No3_21.60m	貝殻	(95.4%)8102 - 7800 cal BP (6152 - 5850 cal BC)
		※「cal BP」:1950年を基準とした年数

^{※「}cal BC|:西暦(紀元前)

No.4 孔の測定結果を柱状図に記載した図を以下に示す。

以上より、砂質土と粘性土層が不均質に互層している沖積基底層は、堆積年代の順序に乱れがあった可 能性が高い。

(3)繰返し一面せん断試験

本試験は、変形(伸び)したと推定される下部粘性土層の残留強度を確認するものである。供試体のせ ん断方向を順次反転させることで、大変形を与え、土の残留強度を評価する。以下に試験結果を示す。

表1.5 繰返し一面せん断試

強 度 定 数	$c \text{ kN/m}^2$	∅ 度	$ an \phi$
ピーク強度(繰返し1回目)	34.05	33.20	0.654
残留強度(繰返し14~15回目)	0.00	25.97	0.487

以上より、残留強度は、粘着力が 0kN/m となりせん断抵抗角は約 26° になった。

(4)練返した土を用いた一軸圧縮試験

本試験は、乱れの少ない試料を練り返して一軸圧縮試験を行う事によって、鋭敏比を求めた。鋭敏比を 求めることで、土の強度がどれだけ低下しやすいかを評価する。以下に試験結果を示す。

影響範囲外の一軸圧縮強さ:135.3 kN/m²(No.3 孔) 練返した一軸圧縮強さ:15.1 kN/m²(No.1 孔)

鋭敏比の算出

影響範囲外の一軸圧縮強さ/練返した一軸圧縮強さ=135.3/15.1=8.96≒9.0

以上より、下部粘性土層は、鋭敏比 St=9.0 であることから鋭敏粘土と判断され、変形によって強度が 低下しやすい性状を持つ。

|--|

1.1.3 緩み範囲の詳細確認

陥没部およびその周辺の緩み範囲を以下の試験により確認した。

(1)S 波検層

本試験は、地盤中に伝播する弾性波動の伝搬時間を測定して、地盤の S 波速度を確認するものである。 地盤の鉛直方法への層区分、各層の強度や動的地盤特性を把握する。以下に試験結果を示す。

夕岡	S波速度									
台信	No.7	No.12	No.13	No.4	No.2	No.3	No.16	No.17		
盛土層	130	150	150~210	170	120	130	150	150		
沖積砂質土層	170	150~180	170	150~190	170	170	160	150		
沖積上部粘性土層	150	120	110	測定不能	140	150	140	170		
沖積下部粘性土層	100	120	90			150	180			
沖積基底層	160	150	220		230	170	180	190		
洪積砂礫層	-	280	-	280	-	330	-	-		
No.4からの離れ	37.4m	18.1 m	9.5 m	0	30.4 m	55.1m	31.3m	29.9m		

表16 S 波 储 層 結 果 一 暫

結果、以下のことが言える。

- ・各層のS波速度は下表のようになる。
- ・陥没部(No.4)では、沖積上部粘性土~沖積基底層まで測定不能となり、N値=0となっている範囲は 空洞ではないものの非常に緩い状態であると想定される。

表 1.7 各層の S 波速度

土層	S波速度(m/s)	備考
粘性土層	120~180	シールドマシン前面の No.4 では測定不能
沖積基底層	150~230	近傍(No.13,12)では減少
洪積砂礫層	280~330	変化なし

以上より、概ねボーリング調査結果の地層構成図と一致した。

(2)音響トモグラフィ探査

本試験は、2箇所のボーリング孔間で計測したデータに基づき、音響波(P波)の伝播速度と振幅減衰 を算出し、計測断面における地盤情報を可視化する。以下に試験結果を示す。

・ 陥没部周囲では低速度域が深部にまで及んでいる。

以上より、概ねボーリング調査結果の地層構成図と一致し、空洞等の特筆すべき特徴は確認されなかっ た。

(3) 微動アレイ探査

本試験は、常時微動と呼ばれる微小な振動を観測し、そのデータを解析することによってS波速度構造 を推定するものである。探査結果から、地盤の硬さを推定し、地盤緩み等を確認する。以下に試験結果を 示す。

図 1.11 微動アレイ探査結果

結果、以下のことが言える。

- ・陥没部から北北西側に 10m 前後の場所を中心として、半径 10~15m 程度の範囲で、周囲に比べて S 波 速度が1~2割程度低下する低速度域を確認(等速度面が落ち込んでいる)。
- ・低速度域は、深度 40mまで確認

以上より、概ねボーリング調査結果の地層構成図と一致した。

(4)表面波探査

ら、地盤の緩み状況を把握する。以下に試験結果を示す。

1.1.4 地中物の確認

ウォーターホールズ工法及び試掘により地中物の確認を実施した。ウォーターホールズ工法は、主に旧 西大橋の橋台部付近で実施し、試掘は、事前に実施した空洞探査結果から空洞が懸念された付近をバック ホウによる直接掘削にて実施した。

	GL [m]	DL [m]	障害物(推測)
No.1	-5.5	7.4	矢板
No.2	-5.3	7.6	∮ 350以上の石、木片
No.3	-2.5	10.4	流動化処理土
No.4	-5.5	7.4	♦350以上の石
No.5-1	-1.3	13.3	基礎
No.5-2	-2.2	12.4	石、管
No.6	-6.0	6.8	ガラ、ゴミ

表1.8 確認した地中物(障害物)

図 1.13 ウォーターホールズエ法結果

結果、以下のことが言える。

- あった。
- ・事前の空洞探査で懸念された空洞箇所には、コンクリート桝やコンクリートガラが確認された。

以上より、陥没事故に影響する地中物は確認されなかった。

・ウォーターホールズ工法で確認された障害物は、 φ 350mm 以上の石やコンクリートガラ、がれき類で

1.2 陥没拡大要因の検討

1.2.1 シールド掘削による地盤の乱れについて

シールド掘削による地盤の乱れについて、各探査結果から以下のことが言える。

- ・ボーリング、S波検層、音響トモグラフィ、3次元微動アレイ探査 結果に共通して、N値が小さい領域や、P波、S波速度の低速度域 が、陥没部に向かって落ち込むように傾斜する様子が認められる。
 但し、陥没部を含まない断面においては、低速度域の傾斜は不明瞭 である。
- ・音響トモグラフィで得られた P 波速度は、シールド通過済みの断面 では、それ以外の断面に比べて低速度である。
- ・S波検層や3次元微動アレイ探査で得られたS波速度では、シール ド通過の有無による速度値の違いは確認できない。
- ・P 波、S 波速度とも地盤の強さの指標として活用されるが、飽和状態の土質地盤ではP波速度は少なくとも水中の伝播速度(1.5km/s) 以上となることから、土質地盤においてはS波速度のほうが、地盤 状況をより詳細に反映できるものと考えられる。
- ・なお、音波の場合、気泡(地下水中のガス)の影響で速度が低下す ることは有るようで、P波速度が1.5km/s未満になることも少なか らずあるともいわれている。⇒本施工では気泡材は使用していない。

以上より、P波速度では違いがみられるものの、シールド通過による 沖積基底層および洪積砂礫層上部の状態の変化は認められないものと 判断される。

<u>図 1.15 物理探査・検層結果比較図</u>

1.2.2 シールド掘削による液状化発生の可能性について

(1)現場での振動観測値

立坑西側の官民境界で観測した2024年9月の振動計測値(平均値)のグラフを以下に示す。 2024 年 9 月の振動計測値は平均 37.2dB、最大値 53dB であった。

(2)振動レベルと地震力の関係

IIS C 1510(振動レベル計)によると、最大値 53dB は地震加速度(1gal=0.01m/s²)に換算して約 1gal と なり、下図において震度1相当となる。

(出典:気象庁 https://www.data.jma.go.jp/eqev/data/kyoshin/kaisetsu/comp.html)

(3) 周辺地盤の液状化強度試験結果

陥没中心と周辺地盤において、繰り返し三軸試験を実施した。RL20(載荷回数 Nc=20 回時点での応力比) は、陥没中心の試験結果が RL20=0.115、周辺地盤における As1 層、As2 層の液状化強度比は 0.115~0.209 であり、陥没中心と周辺地盤で、液状化強度の極端な差はないことが判明した。 RL20=0.2程度の液状化の強さは「小さい」に相当する(表 1.9)。

※「地盤調査・土質試験結果の解釈と適用例、社団法人 地盤工学会」より引用

(4)シールド掘進に伴う振動液状化判定

「道路橋示方書・同解説V耐震設計法」におけるFL法により、液状化安全率を算出した。下図に示すと おり、沖積砂質土層中心部において、FL=0.115/0.011=10.5>1.0 と算出され、液状化が生じないと判定さ れる。

2024年9月のシールド掘削に伴う振動レベルは、震度階に換算して震度1程度である。周辺地盤の液状 化強度に関しても、陥没箇所が特別に液状化しやすい地盤とはいえない。液状化判定の結果、今回のシー ルド掘進に伴う振動レベルを考慮した場合、液状化は生じないと判定された。

図 1.18 シールド掘削振動による伝播イメージ

以下の事故発生時時系列に福島ポンプ場流出量(下水道状況)と2号己斐配水流量(上水道状況)を記載する。また、次ページにその流量の推移をグラフ化して示す。

		` """				上水道状況(2号己斐 配水流量積算)		
	周辺状況	シールト工事	想定浸水量		(m^3/h)		(m^3/h)	
8: 00		8:00 安全朝礼						
10		8:10 坑内へ入坑(JV職員,作業員)						
20		8:26 掘進開始(293R)						
30								
40								
45		8:45 シールド内異常出水		8:45	約480	8:45	約4200	
	8:48頃 運送会社事務所が動き始める	8:47 シールド内出水状況を写真撮影						
		非常事態連絡(坑内JV職員)			ł		4	
50	8:50頃 舗装電袋充生を確認(JV日視)							
	8:52頃 理达会社争務所3階壁に電殺先生(3階)							
55				0.50 法旱쌀浦	<u> </u>			
0.00	0.59頃 追昭阳及で子具撖影(JV喊員)	9:01 坊内から避難字了(1)/融昌作業昌)		0.30 加里讽枫	」 赤 <u>り</u> 340	0.05頃 水道傍揖復❶た写直撮影(□\/暁昌)	<u>\$54800</u>	
9.00		5.01 丸内から歴知元」(50戦員,11米頁)		9.09 流景大幅減	約40	9.09頃 水道管損傷 (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(赤94000	
10	 9·10頃 運送会社事務所4階壁に亀裂発生(4階)				 		1	
10	南側監視カメラ)							
15	9:15 工事監督員現地到着	9:15 立坑作業床面まで浸水	¥匀1220m ³	9:16 流量回復	約480			
20	<u>9:22</u> インフラ冬所に連終		小引1220111		1		1	
25	19:26頃 近隣アパートの亀裂を写直撮影(JV職員)			9.29 流量増	約590			
30	9:30頃 陥没部水没を写直撮影(JV職員)				1,1,1,0,0,0		1	
35	9:37頃 周辺家屋の傾きを写真撮影(JV職員)	9:36 立坑注水開始			1		1	
40					1		1	
45							1	
50				9:51 流量大幅増	約1730			
55]			
10: 00		10:00 シールド中心高さまで浸水	約3420m ³					
10						10:07頃 水道各所閉栓(外駐車場監視カメラ)	約5400	
20				10:29 流量微減	約1540			
30								
40				10:47 流量減	約1030		4	
50								
11: 00		11:00 シールド3/4まで浸水	約5380m ³	11:01 流量減	約660		4	
10					4		4	
20								
30				11:38 当初流量	約470		4	
40					-		4	
50					4		4	
12:00		12:00 トンイル大场よじ浸水	新6700m [×]					
		(50m ³ 注水)						
		18:15 立坑注水終了	約 10550m ³					
			#910330III				J	
			【排 ● 書 源 予	水流入量の増減量 約1 基準値 :8:45の約480 創定時間:8:46〜11:38 流入量の増減があった時間	246 ㎡】 ㎡/h 間 引帯	【水道漏水量の増減量 約 1170 m ³ 】 ●基準値 :※8:45 の約 4200 m ³ /h ●測定時間:9:05~10:07 間 ●水道管損傷を確認した時間から、閉 栓した時間帯		

<u>表 1.10 福島ポンプ場放流量および 2 号己斐排水流量</u>

12

排水流入量約 1,246 m > 水道漏水量約 1,170 m

となり、水道管からの漏水量より下水道施設への流入量の増加の方が約76m³多いことがわかる。

以上より、水道管からの漏水は、地上に吹き出し、道路表面を流れて陥没部に溜まり、下水道施設へ流入したものと想定され、トンネル内に流入した可能性は低いと想定される。

1.3 陥没メカニズムの推定

1.3.1 陥没部の地層の落ち込みについて

調査結果から陥没中心の No.4 地点では地層が大きく落ち込んでいるほか、その周辺にかけて地層の落 ち込みが確認できる。

•No.4とNo.2の各層の出現深度(上端)の落ち込みは下表のようになる。

表 1.11 陥没部:	地層の落ち込み
土層	落ち込み
沖積上部粘性土層	約 3.6m
沖積下部粘性土層	約 5.5m
沖積基底層	約 9.6m
洪積砂礫層	約 7.4m

・沖積火山灰土層は南九州の鬼界カルデラに起因するものであり、広範に広がった噴出物が降下して 形成された地層で、もともとは起伏なく水平に堆積していたと推定される(紫破線)。

・沖積基底層内に、写真(図1.22)に示すような地層の乱れが確認できる。これらは砂分のマトリック スが抜けて、有機質粘土の塊が斜めに入り砂と混合しているなど、自然の堆積現象によるものとは考 えにくい。

図 1.21 地層の落ち込み状況

図 1.22 沖積基底層内の地層の乱れ

また、前述した圧密試験や年代測定の結果から、以下のことを確認した。 ・最陥没部では粘性土が大きく乱されており、強度が低下しているものと判断される。土構造が破壊さ れることで圧密降伏応力が低下し、過圧密から圧密未了状態に移行することで、沈下が生じやすい状 態に変化しているものと推測される。

 ・砂質土と粘性土層が不均質に互層している沖積基底層においては、堆積年代の順序に乱れがあった可 能性が高い。

以上より、地盤が大きく攪乱されて成層構造が破壊されたことが推定される。

粘性土と砂が攪乱された状態

1.3.2 陥没メカニズム

今回の事象は、シールド内出水から3分後に運送会社建物が動き始め、最終的には半径約30mの範囲に 最大で約 2m の沈下が発生したものであった。土質調査結果より、シールドマシン内への土砂の流入が発 生したことで、地中に空洞が発生し、地層が落ち込み、沖積粘性土層の層厚が伸びたものと推定される。 シールド内出水に伴う現地の陥没メカニズムを以下に示す。

表 1.13 陥没メカニズム

4	2)
---	---	---

状況

9:05頃 水道管損傷

·水道管からの漏水が道路表面を流れ、陥没部に滞 留、損傷した下水道管に流入。

・シールド内部と開口部の圧力が均衡し、急速な変形は

・過圧密状態だった粘性土が引き伸ばされて圧密未了 状態となってしまった。

・圧密未了領域に向かって引き込まれるように変形が進

・地表面沈下が継続。

1.3.3 シミュレーション解析による検証

(1)検討概要

数値解析を用いて、「1.3.2 陥没メカニズム」表 1.12,13の内、陥没メカニズム①~⑤までを検証する。 数値解析に用いる地盤条件は図1.23に示す地盤区分ごとに表1.14に示す設計用の物性値を適用するこ ととし、地下水位はGL-3.88m (DL+9.52m) とする。

適用する数値解析手法の目的と特徴を表 1.15 に示す。

図 1.23 地盤区分

表 1.14 地盤物性值

地層 記号	設計 N値	単位体積 重量 γ _t (kN/m³)	せん断 抵抗角 �(゜)	粘着力 <i>C</i> (kN/m²)	変形係数 <i>E</i> (kN/m²)	ポアソン 比 <i>V</i>	透水係数 <i>k</i> (cm/s)
盛土層 (砂質土)	3	19 (一般值)	25 (一般值)	0	1900 (N 換算)	0.40	2.0×10 ⁻²
沖積 砂質土層	9	17.8 (試験値)	38 (試験値)	0	4200 (試験値)	0.40	3.5×10 ⁻³
沖積上部 粘性土層	3	16.1 (試験値)	0	65【4】 (試験値)	8500【1300】 (試験値)	0.45	5.0×10 ⁻⁶
沖積下部 粘性土層	2	15.4 (試験値)	0	67【5】 (試験値)	5500【2200】 (試験値)	0.45	5.0×10 ⁻⁶
沖積 基底層	8	18.6 (試験値)	37【25】 (試験値)	0	5100【670】 (試験値)	0.40	7.0×10 ⁻⁴
洪積 砂礫層	47	20 (一般值)	36 (N 換算)	0	29000 (N 換算)	0.30	1.3×10 ⁻² (2.0×10 ⁻¹)

※【】内の数値は変状発生後の陥没部における試験結果による数値を示す。

表 1.15 実施する数値解析の種類と目的

解析手法	目的
浸透流解析	何らかの原因で生じた空隙から地下水がシールドマシン内に流れ込む状況を把握する
FEM 弾塑性解析	砂礫層のシールドマシン内への流入により生じる地盤変状の状況を把握する
粒子法解析	土砂のシールドマシン内への流入により生じる地盤変状を地盤の大変形まで把握する

(2)浸透流解析

浸透流解析は、陥没メカニズム①及び②のステップを検証する。本解析は、対称軸を中心とした軸対称 モデルで実施する。解析条件として、空隙の大きさを仮定してシールド内湧水発生後の非定常解析とする。 解析モデルを図 1.24 に、得られた解析結果を表 1.16 に示す。

今回の解析に用いた洪積砂礫層の透水係数については、単孔式透水試験から評価しているが、砂礫層の ような粒径の大きな地盤の場合、実際の透水係数と大きく数値が異なることが考えられ、事故発生時の状 況を直接的に説明できるものではない可能性がある。そのため、洪積砂礫層の透水係数を約 20 倍とした 場合の解析結果を表 1.17 に示す。解析結果より、実際の砂礫層の透水係数は単孔式透水試験結果よりも 非常に大きく、空隙も湧水と共に広がりながら湧水量が増大したと想定される。

表 1.17 浸透流解析結果(洪積砂礫層の透水係数を約 20 倍を仮定)

(3)FEM 弾塑性解析

FEM 弾塑性解析は、陥没メカニズム③~⑤のステップ(沖積粘性土下部の空洞発生後)を検証するために実施する。解析は、陥没位置を中心とした軸対称モデルとして実施する。解析条件を以下に示す。

- ・陥没位置を中心とした半径100m、深さ100mの範囲をモデル化。
- ・主働崩壊線の内側の沖積基底層と洪積砂礫層が崩壊すると仮定して、その領域を応力開放する。
- ・地下水位以深について、沖積粘性土層は土水一体とし、それ以外の土層は土水分離とする。
- ・沖積粘性土層は非線形性を考慮する。非線形モデルはモール・クーロンの破壊規準を適用する。
 せん断強度の低下は塑性ひずみ 0.03 以上で見込み、塑性ひずみ 0.3 で残留強度が初期せん断強度の50%となるように設定する。
- ・沖積粘性土以外の土層は線形材料として仮定する

解析結果を以下に示す。図1.27及び図1.28より、沖積基底層と洪積砂礫層の流出により、沖積粘性土 層に塑性化が生じ、地表面に大きな変位が発生することが確認された。また、図1.28より、粘性土層の塑 性化範囲は主働崩壊線に沿って生じる可能性が高いことが確認できた。さらに、図1.29に示す沈下量の 実測との比較により、解析での変位は実測よりも小さくなっており、本解析では地盤の大変形まで追従で きないことが原因であると考えられる。図1.30に示す陥没中心位置の変位で地表面変位を正規化した沈 下量より、実測値と解析について変形モードは良く対応していることが確認できた。

(4)粒子法解析

粒子法解析は、陥没メカニズム③~⑤のステップ(沖積粘性土下部の空洞発生後)を検証するために実 施する。特に、シールドマシン出水後に地表面での変位発生が早かったこと、および FEM 弾塑性解析では 表現が難しい粘性土地盤の塑性化後の大変形を表現することを目的とする。解析は、陥没位置を中心とし た軸対称モデルとして実施する。解析条件を以下に示す。

- ・陥没位置を中心とした半径 30m、深さ 38mの範囲をモデル化。解析モデルを図 1.32 に示す。
- ・モデル下部に半径 3m の範囲で空隙ができたと仮定してその領域を応力開放する。
- ・各土層は非線形性を考慮する。非線形モデルは、強度下限値を有するとともに変形に伴い強度低下 する材料軟化モデルとする。

表 1.18、図 1.34 より、解析開始後直後の 9:00 前に地表面で沈下が発生しており、10:00 の時点で 0.7m の変位が発生する結果となった。図 1.35 より、地表面における変形モードも FEM 弾塑性解析の結果と調 和的であり、大きな沈下量の発生も確認できた。

FEM 弾塑性解析結果より、漏水による洪積砂礫層と沖積基底層のシールドマシン内への流入に伴い、沖 積粘性土層の塑性化が引き起こされ、地表面に相応の変形が発生する可能性が高いことが検証できた。ま た、塑性化の範囲が主働崩壊線に沿って広がっており、正規化した沈下量から見ても、地表面変位が大き くなる範囲が概ね半径 30m内となることが想定される。これより、シールドマシン内に出水が生じ、沖積 基底層と洪積砂礫層を巻き込んで流入した場合、陥没メカニズム③~⑤のステップの事象は起こりえると いうことが確認できた。

粒子法解析結果より、空隙の発生に伴い、沖積粘性土層の塑性化に加え、沖積粘性土層以浅の地盤にも 大変形が生じることが確認できた。さらに、解析開始からものの数分で地表面に相応の変形が発生する可 能性が高いことが確認できた。これより、シールドマシン内に出水が生じ、空隙が生じた場合、陥没メカ ニズム③~⑤ステップの事象は起こりえることが確認できた。

2. 地盤沈下の状況について

2.1 地盤沈下の発生状況と予測

事故直後(9/26 18時)より計測している地表面沈下の状況を以下に示す。

図 2.2 地表面沈下の発生状況

表 2.1	地表面沈下量の予測

沈下 量 m)	半径 10m 地点 (市営住宅付近)	半径 30m 地点 (市営住宅付近)
3月末	196	92
3月末	244	116
3月末	267	127

盛土層	
質土層	
性土層	
性土層	
基底層	
砂礫層	

3. シールドマシン内部の調査方法について

明確な原因究明を行うためには、シールドマシン周囲の地盤を止水し、坑内を排水、流入土砂を撤去す ることで、シールドマシンを直接目視・調査する必要があると考える。これにより出水箇所を特定し、シ ールドマシン損傷の確認(位置・範囲・形状寸法)が可能となる。

3.1 シールドマシンの止水工法の選定

現在シールドマシンは、高水圧下・大深度(約 40m)の玉石砂礫層に停止している。このような条件下 でシールドマシン全体を止水するには、「薬液注入工法」では信頼性に劣り、「高圧噴射攪拌工法」では止 水可能な改良径(試験施工により確認)を確保することが困難である。このため、大深度・高水圧下の条 件において高い止水性を確保できる「凍結工法」が本調査の止水方法に最適であると考える。以下にその 検討結果を示す。

(1)現地地下水の塩分濃度、流速

今回現地で実施した地下水の塩分濃度と流向・流速の測定結果を次ページに示し、凍結工法適用の判定 結果一覧を以下に示す。結果、凍結工法の施工可能範囲にあると判断する。

	-	<u> </u>		
測定場所	揚水深度	塩分濃度(%)	評価指標	判定
	CL 20m	0.55		0
	(☆=)	0.32		0
No.11 観測孔	(,,,_)_)	1.17	塩分濃度 2.5%の施工実績あり	0
	GL-30m	0.73		0
	(ポンプ揚水)	1.10		0

表 3.1 塩分濃度判定結果

<u>表 3.2 流速判定結果</u>

測定場所	揚水深度	平均流速(m/day)	評価指標	判定
No.11 毎別了(小磁)	GL _ 20 5m	1.138		0
110.11 (1917年)	GL-30.5III	1.435	一般に 2m/day 程度が造成限界	0
No.15 観測孔(砂層)	GL-10.5m	1.123		0

(2)止水工法比較検討結果

止水工法の比較検討結果を以下に示す。

比較	交工法	薬液注入工法		高圧噴射攪拌工法		凍結工法	
検	概念図						
 案 概 要	工法概要	・地盤中に薬液を注入し 化 ・固化時間を調整できる を地盤間隙に注入	て固 薬液	 ・地盤中にセメント系固化 水を練り合わせたセメン ラリーを高圧で噴射し、 を攪拌混合して地盤改」 を造成 	材と 小ス 土砂 良体	 ・地盤中に含まれる間隙 凍結し凍土を造成 ・地盤を凍らせて強度確止水 	〕 水を 雀保・
	使用材料	水ガラス系硬化剤		セメント系固化材		不凍液(CO2 またはブラ で地盤凍結	イン)
	適用地盤	 ・軟弱地盤に適用 ・砂質土に向く 		・ ・ 粘性土・砂質土地盤に適用 ・ 硬質地盤では出来形小		・全地盤に適用	
	参考改良強度 (MN/m ²)	0.1		1.0~3.0		5.0(塩分濃度 0.0%) 0.5(塩分濃度 2.5%)	
	品質信頼性	・改良にムラが発生しや すい ・主に仮設工事に用いら れ、重要度が高い工事 には適さない	Δ	 ・小さいボーリング孔から 大径改良が可能 ・高強度の改良が可能 	0	 ・地下水以下であれば、 各種地盤で適用可能 ・含水比が高い粘性土 は凍結膨張の可能性 がある ・地盤温度モニタリング で品質管理可能 	0
比較内容	施工性	 ・出水箇所が不明なた め、改良範囲が広範囲 	Δ	・玉石礫層では玉石背 面の影となる部分に高 圧噴射が届かず、未改 良部が発生する可能 性が高い	×	 ・止水性が高く、信頼性の高い工法 ・塩分濃度を確認した結果、適用範囲内 ・水流はほぼなく、凍土 造成可能 	0
	適応性	 ・立坑を構築してシール ド直下も止水可能 ・シールドマシンと改良体 が付着して再掘進が困 難 	Δ	 ・シールド直下の施工が 困難 ・シールドマシンと改良体 が強固に付着して再掘 進不可 	×	 ・立坑を構築してシール ド直下も止水可能 ・凍土を解凍すれば自 然地盤に戻り再掘進 可能 	0
評	価	・仮設工事用で止水性 の信頼性が低く適切で はない	Δ	 対象地山では止水に 必要な均一な改良体 の造成が困難 	×	 ・全項目で他の工法を 上回り、本工事に最適 である 	0

表3.3 原因究明方法の詳細比較検討結果

(3) 塩分濃度、流向・流速測定の結果詳細

①塩分濃度測定

塩分濃度測定の結果、陥没箇所の塩分濃度は 0.32~1.17%(平均 0.77%)であった。以下にその測定結果 の詳細を示す。

②流向·流速測定

流向・流速測定の結果、陥没箇所の平均流速は1.123~1.435m/day(平均1.232 m/day)であった。以下 にその測定結果の詳細を示す。

Ņ	則点	試験場所	流向(度)	平均流速(m/day)		
Γ	1	陥没笛斫 No 11観測孔(砂礫層)	97.2	1.138		
	2		95.5	1.435		
	3	陥没箇所 No.15観測孔(砂層)	92.5	1.123		
※一般に2m/day程度が限界(ICECRETE協会 技術資料)						

3. 2 シールドマシンの止水領域について

第1回委員会で示したように、現在シールドマシンは、高水圧下・大深度(約40m)で停止しており、 止水の対象となる地盤は、周辺と比較して複雑な構成となっており、以下のような条件である。

領域❶シールドマシン前面付近 領域❷シールドマシン側方~後方付近 地層 | a. 沖積粘性土層が乱された地盤 a. 沖積基底層 b. 沖積基底層が乱された地盤 b. 洪積砂礫層 c. 部分的に洪積砂礫層 N值 a. 0~1程度 a. 5~10 程度 b. 0~1 程度 b. 50以上 c. 50 以上

【概念図】 平面図 止水範囲 領域2 領域① シールドマシン Ð 100 縦断図 止水範囲 領域2 領域① シールドマシン

シールドマシン姿勢調査より、シールドマシンは1度上向きに53.9%程度までピッチングの変化が発生 し、その後現在は20.5‰にピッチングが変化しているものと推定される。シールドマシンとセグメントは

図 3.4 シールドマシンの姿勢

よって、領域 02ともに凍結する手法を採用する。

この止水領域を①のみとするか、①②の両方とするか検討を行う。

図 3.3 シールドマシンの止水領域

E

3.3 シールドマシン内部の調査方法

シールドマシン内部の調査方法は、「シールドマシン全体凍結」案となる。以下にその詳細を示す。

4. その他の調査及び検討の結果について

- 4.1 シールドマシンについて
- (1)シールドマシン図面・主要スペック

シールドマシン主要スペック

	項目	内容
	シールドマシン外径	ф6.150m
	カッタートルク	6208.1kN-m(α値:26.7)
	シールドジャッキ	1850kN×1350mm×21本
机壮平	シールドジャッキ伸長速度	50mm/min(全数作動時)
一放表直	中折れ角度	左右9.7°,上下0.5°
	コピーカッター	実余掘量200mm×3台
	排土装置	1次リボン型:排出礫直径560mm
		2次シャフト型:排出礫直径308mm
		最大取扱重量3.2t
		動作自由度5(旋回・昇降・摺動・ピッチング・ローリング)
	形状保持装置	上半拡張式
付帯装置	≂	ワイヤーブラシ3段
) - 2 - 2	テールシール充填管2室×6箇所
	地山探査装置	ジャッキ貫入式×上部3箇所
	後続台車	合計9輛(切羽より約90m)

スクリューコンベヤー スペック						
項目	数值	単位				
最大礫径						
事前のボーリング調査の結果による最大玉石径	ф450					
カッター面板の取り込み開口径	ф497	mm				
1次スクリュー搬出礫最大寸法	ϕ 560 × 790L	mm				
1次スクリュー仕様						
型式	RA800型(リ	ボン式)				
フライト径×ピッチ	ϕ 800 × P910	mm				
排土量	128.7	m3/h				
回転数	6.6	rpm				
電動機出力	90	KW				
装備トルク	132.3	kN∙m				
α値(トルク/フライト径 ³)	258.4	_				
2次スクリュー仕様						
型式	SA800型(シ	ャフト式)				
フライト径×ピッチ	ф800×Р680	mm				
排土量	195	m3/h				
回転数	10.6	rpm				
電動機出力	75	KW				
装備トルク	76.3	kN∙m				
α値(トルク/フライト径 ³)	149.0	_				

4.2 シールド出水原因の推定のための調査・検討結果

シールドマシンの出水原因を推定するために以下の調査および検討を実施した。

<u>X > // </u>	
推定内容	追加調査·検討
トンネル内流入水の水質	4.3 トンネル内流入水の水質について
出水初期段階での流速検証	4.4 トンネル内異常出水の検討
	4.4.1 トンネル内流入速度および開口寸法の再検討
	4.4.2 水中ドローンによるシールドマシン内調査
シールドマシンの損傷状況の絞り込み	4.5 シールドマシンの姿勢
	4.6 シールド事故事例調査
	4.7 事故時の住民ヒアリング調査
	4.8 施工管理データの検証
	4.8.1 掘進データの分析
	4.8.2 事故発生直前の礫取箱土圧の上昇について
	4.8.3 シールドマシン緊急対策機能
	4.9 シールドマシンの品質管理状況調査
	4.10 セグメントの品質管理状況調査

表41 シールド出水原因の推定のための調査・検討

以降にシールド出水原因の推定のための調査・検討結果の詳細を示す。

4.3 トンネル内流入水の水質について

近隣ボーリング孔(No.11)とトンネル内の水質について試験した結果を以下に示す。

表4.2 トンネル内流入水の水質比較

百日	出生	近傍ボーリング孔(No.11)(地下水)	発進立坑(流入水)			
	甲位	深度:GL-29m(参考)	深度:トンネル坑口付近			
рН	рН	7.26	7.43			
ORP	mV	75	130			
DO	mg/L	3.52	4.52			
温度	°C	17.8	14.6			
濁度	NTU	30.2	2.8			
電気伝導率	μS/cm	16,700	10,000			
塩分濃度 ※1	%	0.64	0.36			
全溶存固形物量	g/L	15.3	8.7			
硝酸イオン	mg/L	101	99			
塩化物イオン	mg/L	3.9×10 ³	2.2×10^{3}			
カルシウムイオン	mg/L	2.1×10^{2}	3.5×10 ²			
フッ化物イオン	mg/L	0.51	0.21			
カリウムイオン	mg/L	172	158			
アンモニウムイオン	mg/L	39	4.2			

※1:塩化物イオンから換算した塩化ナトリウム濃度は以下のとおり。 (概算換算式)

・近傍ボーリング…3900/35.5×58.5=6445(mg/L) ・発進立坑…2200/35.5×58.5=3625 (mg/L)

塩化物イオン分析値(mg/L): 3900、2200 塩化物イオンの原子量 : 35.5 し塩化ナトリウムの分子量 : 58.5

【引用文献】

以上より、塩分濃度と相関の高い電気伝導率に着目すると、トンネル内は10,000 µ S/cm である。これ は汽水域に相当し、水道水は通常100~300 µ S/cm 程度である。このため、トンネル内流入水のほとんど は交差点部の地下水であると推定される。

1) (公社)日本地下水学会編「地下水水質の基礎」,理工図書, p. 148-151.

4.4 トンネル内異常出水の検討

4.4.1 トンネル内流入速度および開口寸法の再検討

第1回委員会資料に示すように、事故発生の経緯より想定したシールド内への浸水の流入速度の最大 値は、48.6m³/min、開口換算直径はφ=38.3cm(10:00時点、下図参照)である。その妥当性を他の算定 方法から精査する。

【シールド内浸水時の開口寸法の想定】	
最高流入速度 48.6m ³ /minの時に想定さ	れる開口寸法を算出する (小型オリフィス公式より)。
・開口断面積	$A = 1154 cm^2$
・円形と仮定した開口換算直径	$\phi = 38.3$ cm
【浸水量(最大値)】	5840(トンネル体積)+4710(立坑体積)=10550m³

【後続台車部撮影写真からの流入速度の算出】

8:56:37 に後続台車部で撮影された出水状況写真(図 4.2)の浸水状況より浸水量を求める。

写真より、①No3 台車後端部で台車床高さ、②No4 台車後端部で軌条高さまでの浸水が確認できる。① ②の2点を結び、前後に延長すると図4.3のような浸水状況が想定される。

円形と仮定した開口換算直径 φ = 41.5cm

4.4.2 水中ドローンによるシールドマシン内調査

①実施日時

第1回目:2024年11月12日(火)8:00~ 第2回目:2024年11月19日(火)8:00~

②調査内容

第1回目:トライアル調査(水中ドローンを用いて、シールド坑内の状況を把握)

【調査結果】

坑口から約 163m地点付近のNo.8 後続台車のフレームまではカメラで確認できた。後続 台車間は堆積物の巻上げが多く、視界が悪い。同じ高さで潜水するが途中体積土砂に入り 込んでしまう感じがあり、それより先の調査は不可。また、水中ドローンのバッテリーも 少なく、調査完了後、立坑下付近でバッテリー電源が尽きた。

【実施イメージ】

第2回目:本調査(No.8後続台車付近をより詳細に調査し、堆積土砂の高さ等を把握)

【調査詳細】

坑内風管を頼りに進行すれば、No.8 後続台車までは調査することが可能であったため、電 源ケーブルを有した水中ドローンでチャレンジする。これにより、電源の心配はなく、ラ イト照度も明るくできる。だだし、調査延長が 200m程度であり、トンネル先端までは不 可。そのため、No.8 後続台車付近をより詳細に調査し、堆積土砂の高さ等の把握を目的に 行う。

【調査結果】

土砂堆積状況を概ね確認できた。次ページ以降に土砂堆積量の推定根拠を示す。 調査結果をもとに土砂堆積量を推定すると1,700~1,800m³となる。

- ・坑口~130m 地点:枕木下端
- ・坑口~135m 地点:レール天端
- ・坑口~165m 地点(後続台車後端):下図のとおり

図 4.7 水中ドローンによるシールドマシン機内調査(第2回)

定する。

地点(作業床)、地点③: 坑口から 150m 地点(後続台車最後部)の三箇所である。地点①、地点②、地点③ の土砂堆積高さを結ぶと、およそ一定勾配であることが確認できた。下記の3区間でそれぞれ場合分け して坑内土砂量を算出する。また、坑内の土砂堆積状況イメージ(平面)を図4.8に示す。

●区間:立坑~地点①

●区間:切羽~地点③

【検討結果】

<u>表 4.3</u>	3 土砂堆積量算出結果			
土砂堆積量(m ³)	フケ率	換算土砂堆積量(m ³)		
2002	1.10	1,820		
2,002	1.15	1,741		

水中ドローン調査写真

<u>写真 4.1 トンネル坑口上部送風管固定部</u>

<u> 写真 4.2 トンネル坑内上部送風管</u>

<u>写真 4.3 トンネル坑内表示器</u>

<u>写真 4.4 トンネル坑内軌条(枕木・レール交差部)</u>

<u>写真 4.5 トンネル坑内軌条(枕木・レール交差部)</u>

<u>写真 4.6 トンネル坑内インバート(レール直上)</u>

<u>写真 4.7 最後部後続台車門型左部材</u>

<u>写真 4.8 最後部後続台車門型右部材</u>

<u>写真 4.9 最後部後続台中央部(ドローン前進不可)</u>

<u>写真 4.10 最後部後続台中央部(ドローン前進不可)</u>

<u>写真 4.11 最後部後続台定点カメラ 4</u>

4.5 シールドマシンの姿勢

4.5.1 シールドマシンの姿勢調査

第1回委員会の後、追加で直接探査ボーリングを実施してシールドマシンの姿勢を詳細に確認した。 前回シールド中心線上3測点のところ、今回は中心線と左右の線上で各5測点、全15測点でシールド マシンの深度を探査してシールドマシンのピッチングを確認した。

	調査	調査方法	ピッチング(‰)				
掘進管理システムによる 想定姿勢		—	53.9				
前回 調査	磁気探査ボーリング	3 測点から磁気プローブにより磁気強度変 化を測定	44.9				
	直接探査ボーリング	シールドマシン中心線上の3測点よりシー ルドマシン天端深度を直接探査	22.7				
追加 調査	直接探査ボーリング	シールドマシン中心と左右線上で各5測 点よりシールドマシン天端深度を直接探査	20.5				

表44 シールドマシンの姿勢調査結果

調査位置及び結果を下図に示す。現状のシールドマシンピッチングは、20.5‰であることを確認した。

4.5.2 シールドマシン姿勢検討

4.6 シールド事故事例調査

シールドマシンの水没事故事例を下表に示す。 表より、本工事を除く事故事例の補修範囲については、

・シールドマシン電気機器は全現場 「交換」 「整備」 ・駆動部・ジャッキ類は全現場 「整備」 ・油圧機器は多くの現場で

である。

なお、調査の回答は1社である。

	表 4.5 シールドマシンの水没事故事例								
							補修範囲		
シールド径	機種	原因	水没箇所	流入物	水没範囲	対策	シールドマシン 電気機器	駆動部・ジャッキ類	油圧機器
∮6m (本工事)	泥土	機内に土砂が流入	発進から 260m	地山の土砂	シールドマシン・ 後続台車	検討中	検討中	検討中	検討中
φ 4m	泥水	送排泥管解体時に誤作動でバ ルブが解放され流入	初期掘進中	運河の海水	シールドマシン	バルブに盲栓を施工して排水			整備
φ 2m	泥土	豪雨による河川氾濫での立坑水 没	到達間際	雨水	シールドマシン・ 後続台車	ポンプで排水	- - - - -	整備	交換
φ 4m	泥水	セグメントが半径方向への抜け 出し流入	急曲線施工直後	地下水	シールドマシン・ 後続台車	ポンプで排水			整備
φ 3m	泥水	段取り替え中に、立坑が水没	発進部	地下水	シールドマシン	ポンプで排水			整備
<i>ф</i> 4m	泥水	段取り替え中に、立坑が水没	発進部	地下水	シールドマシン	ポンプで排水			整備
φ 5m	泥土	給水ラインのトラブルによる流入	発進から数百m	水道水	シールドマシン・ 後続台車	ポンプで排水			整備
φ 5m	泥水	エントランスのトラブルによる流入	発進部	海水	シールドマシン	発進地盤改良区間を凍結			交換
φ 5m	泥土	立坑内の漏水により流入	発進部	地下水	シールドマシン	発進地盤改良区間を凍結			整備

4.7 事故時の住民ヒアリング調査

36

4.8.2 事故発生直前の礫取箱土圧の上昇について

出水直前の荷重に対するスクリューコンベヤーの耐力検討を行い、その安全性を確認する。出水直前 の切羽土圧および礫取箱内圧力を以下に示す。

(1)解析方法

弾性二次元フレーム解析を実施して発生断面力を求め、出水直前の荷重(0.73MPa)が作用した場合の 各部の安全性を確認する。

(2)検討対象

スクリューコンベヤーの構造概要を左図に示す。

スクリューコンベヤー本体は開口による断面欠損があるため、厳しい条件となる中間点検口部と先端 点検口部を検討対象とした。さらに、各接合ボルト2箇所を加えた計4箇所を検討対象とする。

<検討対象>

①スクリューコンベヤー本体(中間点検口部 補強断面) ②スクリューコンベヤー本体(先端点検口部) ③フランジ接合部ボルト ④球面部ボルト

(5)解析結果

フレーム解析の結果を以下に示す。

曲げモーメント図

検討対象	曲げモーメント (kN·m)	軸力 (kN)	せん断力 (kN)
①スクリューコンベヤー本体 (中間点検口部 補強断面)	-3002	-965	-1363
②スクリューコンベヤー本体 (先端点検口部)	-1432	-955	-1341
③フランジ接合部ボルト	-1836	-957	-1346
④球面部ボルト	0	-947	-1323

(6)耐力照査

各検討対象の耐力照査を行う。

表4.7 検討対象の発生断面カー覧

检 計計每	引張応力(N/mm ²)			せん断応力(N/mm ²)		
快韵刈家	発生応力	許容値	判定	発生応力	許容値	判定
 ①スクリューコンベヤー本体 (中間点検口部 補強断面) 	192	0.05	OK	14	125	OK
②スクリューコンベヤー本体 (先端点検口部)	139	230	OK	28	130	OK
③フランジ接合部ボルト	214	040	OK	55	105	OK
④球面部ボルト	112	540	OK	156	400	OK

照査結果の結果、すべての検討対象について発生応力は許容値以下になった。 以上のことからスクリューコンベヤーの出水直前の荷重に対する安全性を確認した。

せん断力図

図 4.25 フレーム解析結果

4.8.3 シールドマシン緊急対策機能

本工事シールドマシンに装備している緊急対策機能について以下に示す

(1)緊急対策機能の概要

スクリューには、緊急対策機能として以下の3つのゲートを装備している。 ①先端ゲート ②1次スクリューゲート ③2次スクリューゲート

それぞれの機能と開閉操作について以下に示す。

①先端ゲート

・スクリュー回転不能時(礫閉塞等)のチャンバーとスクリュー分断機能(分断後、点検、礫撤去が可能)

・フライト位置を調整後、刻印を確認して操作 先端ゲートについて、開閉の詳細図(取扱説明書抜粋)を以下に示す。

②1 次スクリューゲート

- 土砂噴発防止および排土の調整機能
- ・シールド操作盤にて手動で開閉操作
- (停電時にはアキュームレータに蓄積したエネルギーにより開閉操作が可能)

③2 次スクリューゲート

- 土砂噴発防止および排土の調整機能
- ・シールド操作盤にて手動で開閉操作
- (停電時にはアキュームレータに蓄積したエネルギーにより開閉操作が可能)

1次・2次スクリューゲートについて、開閉の詳細図(取扱説明書抜粋)を以下に示す。

図 4.28 1次・2次スクリューゲート概要

(2)出水時の対応

事故発生時の対応を下表に示す。

表 4.8 事故発生時の緊急対策機能の操作

緊急対策機能	事故
①先端ゲート	未操作(閉操作にはフライト位
②1 次スクリューゲート	出水確認後、直ちに(8:46:4
③2 次スクリューゲート	出水確認後、直ちに(8:45:

出水確認後、直ちに1次および2次スクリューゲートを閉操作して緊急対策を実施した。1次および 2次スクリューゲートを閉じたにも関わらず、切羽前方からの出水が止まらなかったことから、1次ス クリューゲートより前方からの出水と推定される。

なお、先端ゲートはスクリュー内部のフライト位置を確認しないと閉操作できないもので、緊急対策 用の装備ではない。先端ゲートは閉操作を行っていない。

4.9 シールドマシンの品質管理状況調査

(1)溶接検査

溶接検査について『トンネル標準示方書』に則り実施し、外観目視検査及び非破壊検査も実施してい る。下記に標準示方書との比較表及び実施状況を示す。また現地での実施状況について次ページに示す。

|--|

部位	トンネル標準示方書	当シールドマシンの検査内容
全般	【工場/現地】	【工場/現地】
	外観目視検査	外観目視検査及び地山と繋がる溶接部で溶接
		脚長が 10mm 未満の部分については非破壊検
		査を実施。
フード	同上	【工場】
ブロック		同上
		【現地】
		同上及び、減速機フレームとバルクヘッド接合
		部、フードブロック鋼殻接合部を各 2 か所(1 か
		所 300mm)非破壊検査(浸透探傷試験)を実
		施。
テール	同上	【工場/現地】
ブロック		外観目視検査及び、地山と繋がる溶接部で溶接
		脚長が 10mm 未満の部分については非破壊検
		査を実施。
スキン	【現地】	【現地】
プレート	突合せ溶接で、テールスキンプレートの両	厚板 40mm の突合せ溶接部材を計 4 か所(1 か
	方の板厚が 40mm を超える場合に非破壊	所 300mm)非破壊検査(浸透探傷検査)を実
	検査を行う場合がある。	施。
	非破壊検査を行う場合は抜き取りで行い、	
	その範囲は 250mm 以上とする。	

図 4.29 外観検査状況

図 4.30 浸透探傷検査状況

(2)ボルト締結

ボルト締結について、トルク管理が必要な部分についてはトルクレンチにより締め付けトルクを確認 している。そのほか、シール材を挟み込む部分等においては隙間管理を行っている。両部位とも締め付 け確認を実施しているか確認するため、マーキング処理を行っている。スクリューコンベヤーのボルト 締結について、検査内容および実施状況写真を以下に示す。

表 4.10 ボルト仕様・締結等に

部位	締結ボルト サイズ/ 強度区分	締結方法	ロック タイト塗布 の有無	ボルト締結に 関する記録
球面部	M24/10.9	締結トルク管理対象外としてイン パクトレンチを使用した締結	有	有り 使用ボルトは購入記 録で確認済み
分割 フランジ部	M36/10.9	締結トルク管理対象外としてイン パクトレンチを使用した締結	有	有り 使用ボルトは写真で 確認済み
点検口	M16/4.8	点検口蓋とスクリューコンベヤー 本体間にゴムパッキンがあり、各 接触面に 0.1mm の隙間ゲージが 入らなくなるまで均等に締め付け る	有	有り 使用ボルトは写真で 確認済み

図 4.31 分割フランジ部ボルト区分表記

図 4.32 開口蓋部ボルト区分表記

関する検	資本内容
------	-------------

للاعوان.» الا	, 7		++	7년~~71 승규 모르	71/2=31	7 1 = 37 + 4	H+ +>	1			
N	U.		本上争	唯認部門	帷認日	唯認者	偏考	4	ᄪᇛᆂᆂᆇ	シーム	ンール溝(P
1	4				ナて主			T⊄ ≣T □	駆動部左	F1+F2石側	F1+F2石俳
√ /	1	ナールクリス元頃溝蓋浴技部	0						11/220	11/220	11/100
V /	2	中折れ球団浴技部	0			白衣			+ 200mm)		
~	3	中折れシール溝(内側)浴技部	0		石衣	石衣			- 300mm)		/
	4	カッタースホークと小ス溶接部	×	_	_	-		一現地溶接線			/
1	6	センターシャントと小人俗技の	^		12870				\checkmark		
v /	7	フィッシュノール沿抜印	0			ナキ			<u> </u>		
v /	0		0		12日7日	石衣			"	1	
v /	0		0								
v /	10	13.計異 駆動却」が近力ないど	0		11月20日			1.	\backslash		
~	10		0		白衣	白衣		74≠≑37 ⊡	11/220	11/220	11/160
-								唯心口 	11/220	11/220	11/100
2		复索락胶						11推动有	取制如于	E1,E2+個	E1,E2ナ/8
	1	大省起驶 送排泥筒	~	_					影到的石	「〒2左側	「「」」2左頂
/	1	这件が官 カッターフポーク内部	^		×1			1_1 TC进業		<i>9</i> –4	シール海(ド
v /	2	カッチーズホーク内部	0		×1 ×2				な辺口	旋 汉去	No
~	3				<u>%</u> 2			Nu. A 1	1111日7日	1111 前21日	R1
2	1	注泥ラインルート (PL→カッター)	0		118270			A1	12月7日		B2
3	V		0		п д 27 ф			A2	12月7日		DZ D2
1			-					A3	12月7日		B/
4	- 4	カッターフポーク肉ホーフ養生	0		12849			A4	12月7日		D4 85
v /	2		0					A6	12171		B6
~	2				пдан			No.4	12月7日		No 1
5	-				-			No.3	12月7日		No.2
1	1		0		11日22日				теліта		110.2
1	2	葉「及(エーカド) 軸方向の曲がり (右上 左上)	0		12日13日			E E	5 31.	S	6
~	2		<u> </u>		1271101			(4)-1 	3422	24.20	<u>_+6</u>
	-								45 Va. 4		X Fr.
VТ	桐								PE6	**	13
<u> </u>	们用	※1 センター軸とけ加圧したがフリッ	プリング	トリェフ涅・	わのため			It		1	1.1/-
			フリアン・ 五日 たい対	キサエノ 個4				HAS No.	3	32	F XI
		风省 試験 から 浴 按 部 外 睨 日 悦 に 愛 5	とした。 裕	未は共吊悪				29. Y	15	No.	The second
		※2 カックーフェイフに取付けた記録	田公日却	トロンマ沢・	れのオート			55		T4 A2	prof 1
		×2 カウターノエイスに取付りた試験 + フロ注意のにて於少なかけ、ラ	小山県即の	よりエノ吶	レムロジー	t_		1 22	**	53 K	in a la company a company
		ホース接続的に石鹸水をかり、ノイ	「/中に喃	111/1、無いこ	ことを唯心し、	100		ter.	B' N	IC. 2 A3	Y./
								1		22.14	19:20
								(F)	32	20.11	
									デール (後) KEY (像) mp と見ま	PLAN	ールシール売壊着(5ヶ所・前室) ールシール売填清(5ヶ所・後室) ールシール売算清(5ヶ所・後室)
								l	(S-1:5C)	<u>γ</u> φ : 7	

<u>図 4.33 現地工事自主確認表(実施例)</u>

No. Con	工程名: 1-1
	TG蓋溝 PT
Andrew	
and the	

工程名: 1-2
中折れ球面部 PT
T1+T2右側

3

図 4.34 現地溶接検査実施状況(抜粋)

	工程名: 1-6
	フィッシュテール溶接部 PT
CI	

エ程名: 1-7

F1+F2右側PT

工程名: 1-7

F1+F2左側PT

4. 10 セグメントの品質管理状況調査

セグメントについては、以下に示す各段階での品質管理を実施している。所定の品質・製品寸法であ ることを確認している。

(1)工場製作時

セグメント製造メーカーにて所定の品質・製品寸法であることを確認の上、出荷している(品質管理 月報として毎月記録)。月報の目次を以下に示す。

	報	告	書	内	訳	
Ι	製造月報(RC·	セグメン	ト製造数	数量)		
Π	品質管理月報					
	1. コンクリ ① セメ ② 混和 ③ 細・ ④ 練り	ート材料 ント 剤 阻骨材 昆ぜ水	試験			
	2. コンクリ・ ① コン ② スラ ③ 空気: ④ コン ⑤ 細骨:	ート管理 クリート ンプ クリート クリート 材表	データ 圧縮強 中の塩 率試験	度		
	3. セグメン	ト製品検	渣			
	 4.鋼材検査 ① 鉄筋 ② 継ぎ 	証明書 かご 手金物				

<u>図 4.35 品質管理月目次</u>

(2)現場搬入時

搬入時の荷姿、セグメント損傷の有無、製品寸法について定期的に確認(自主・立会)している。受 入検査の実施状況写真を以下に示す。

图 4.36 受入検査実施状況写真

(3)セグメント組立時

組立リング数に該当する製品番号を記録しトレーサビリティー管理を実施している。目違い・目開き を目視確認する。当現場のKセグメントは半径方向挿入型である。

<u>表 4.11 セグメント製造記録表(例)</u>

観音地区下水道築造3-1号工事

RCセグメント製造No.記録表

材料名 RCセグメント外径 φ6,000mm 、 内径 φ5,400mm

	リンク NO	種別	製造番号	リンク NO	種別	製造番号	リンク NO	種別	製造番号
2 12005 50 52 12005 8 190 12005 13 3 12005 41 53 12005 88 191 12005 667 4 12005 42 55 12005 81 192 12005 667 6 12005 43 56 12005 78 194 1200719 466 7 12005 35 57 12005 79 196 12005 53 8 12005 31 60 12005 77 198 12005 561 12 12005 33 61 1200719 48 199 12005 22 11 12005 63 12005 12 201 12005 66 120 12005 62 12005 60 203 12005 66 120 12005 64 12005 66 207 12005 14	1	1200S	51	51	1200S	99	189	1200S	58
3 12005 41 53 12005 88 191 12005 67 4 12005 40 54 12005 88 192 12005 68 5 12005 43 56 12005 78 194 1200719 46 7 12005 35 57 12005 79 195 12005 53 8 12005 39 58 12005 77 198 12005 54 10 12005 31 60 12005 77 198 12005 51 12 12005 37 62 12005 80 200 12005 56 13 12005 37 62 12005 69 202 12005 32 14 12005 27 65 12005 61 204 12005 32 15 12005 23 67 12005 64 206 <	2	1200S	50	52	1200S	8	190	1200S	13
4 12005 40 54 12005 98 192 12005 68 5 12005 42 55 12005 81 193 12005 69 7 12005 35 57 12005 79 195 12005 53 8 12005 34 56 12007 79 196 12005 54 10 12005 31 60 12007 77 198 12005 54 12 12005 37 62 12005 80 200 12005 52 13 1200719 50 63 12005 60 203 12005 26 68 14 12005 27 65 12005 60 203 12005 57 17 12005 23 67 12005 64 206 12005 84 19 12005 24 69 12005 65 <	3	1200S	41	53	1200S	88	191	1200S	67
5 1200s 42 55 1200s 81 193 1200s 96 6 1200s 43 56 1200s 78 194 1200rs 53 8 1200s 33 58 1200s 96 196 1200s 54 10 1200s 34 50 1200r19 47 197 1200s 54 10 1200s 33 61 1200r19 48 199 1200s 91 12 1200s 37 62 1200s 80 200 1200s 92 14 1200s 49 64 1200s 59 202 1200s 36 15 1200s 27 65 1200s 61 204 1200s 57 16 1200s 23 67 1200s 65 207 1200s 144 1200s 24 69 1200s 65 207 1200s	4	1200S	40	54	1200S	98	192	1200S	68
6 1200s 43 56 1200s 78 194 1200T19 46 7 1200s 35 57 1200s 79 195 1200s 53 8 1200s 34 59 1200T19 47 197 1200s 54 10 1200s 31 60 1200T19 48 199 1200S 91 12 1200s 37 62 1200S 80 200 1200S 96 14 1200s 49 64 1200S 60 203 1200S 97 15 1200s 27 65 1200S 60 203 1200S 70 18 1200s 23 67 1200S 64 206 1200S 84 19 1200s 24 69 1200S 65 207 1200S 144 20 1200s 14 1200S 71 120S 143	5	1200S	42	55	1200S	81	193	1200S	69
7 1200s 35 57 1200s 79 195 1200s 53 8 1200s 39 58 1200s 96 196 1200s 100 9 1200s 31 60 1200s 77 198 1200s 91 10 1200s 33 61 1200T19 48 199 1200s 91 12 1200s 37 62 1200s 80 200 1200s 92 14 1200s 49 64 1200s 59 202 1200s 36 15 1200s 27 65 1200s 60 203 1200s 67 17 1200s 23 67 1200s 64 206 1200s 84 20 1200s 34 70 1200s 72 208 1200s 144 20 1200s 34 70 1200s 87 211	6	1200S	43	56	1200S	78	194	1200T19	46
8 1200s 39 58 1200s 96 196 1200s 100 9 1200s 44 59 1200r19 47 197 1200s 54 10 1200s 33 61 1200r19 48 199 1200s 91 12 1200s 33 61 1200r19 48 199 1200s 92 14 1200s 49 64 1200s 59 202 1200s 36 15 1200s 27 65 1200s 60 203 1200s 57 17 1200s 23 67 1200s 64 206 1200s 84 19 1200s 24 69 1200s 65 207 1200s 144 20 1200s 16 74 1200s 87 211 1200s 147 21 1200s 16 74 1200s 75 214	7	1200S	35	57	1200S	79	195	1200S	53
91200844591200T194719712008541012005316012005771981200522111200533611200T194819912005911212005376212005802001200592141200549641200559202120056615120052765120056020312005661612005326612005612041200584191200524691200565207120051442012005347012005722081200514421120051872120056321012005147231200T194973120058721112005147231200T194973120057321212005147241200515751200573214120051452512005141200575214120051452612005157612005752141200514527120051412005752141200513729120052812210051351363012005281212005<	8	1200S	39	58	1200S	96	196	1200S	100
10 1200S 31 60 1200S 77 198 1200S 22 11 1200S 33 61 1200T19 48 199 1200S 91 12 1200S 37 62 1200S 80 200 1200S 66 13 1200T19 50 63 1200S 59 202 1200S 36 15 1200S 27 65 1200S 60 203 1200S 67 17 1200S 23 67 1200S 62 205 1200S 84 19 1200S 24 69 1200S 65 207 1200S 144 21 1200S 34 70 1200S 72 208 120S 141 21 1200S 46 71 1200S 73 212 1200S 14 23 1200T19 49 73 1200S 75 214	9	1200S	44	59	1200T19	47	197	1200S	54
11 1200S 33 61 1200T19 48 199 1200S 91 12 1200S 37 62 1200S 80 200 1200S 56 13 1200T19 50 63 1200S 12 201 1200S 92 14 1200S 49 64 1200S 59 202 1200S 36 15 1200S 27 65 1200S 60 203 1200S 57 17 1200S 23 67 1200S 62 205 1200S 84 19 1200S 24 69 1200S 65 207 1200S 144 20 1200S 18 72 1200S 63 210 1200S 147 23 1200T19 49 73 1200S 87 211 1200S 17 24 1200S 15 75 120S 74 213	10	1200S	31	60	1200S	77	198	1200S	22
121200537621200580200120055613120071950631200512201120059214120054964120055920212005361512005276651200560203120056616120052367120056120412005701812005266812005642061200584191200524691200565207120051442012005347012005722081200514321120051872120056321012005147231200719497312005632111200516724120051674120057321212005147241200515751200575214120051452612005142151200514727120051421512005142281200517 $\frac{*}{7}$ 7120057521412005145271200517 $\frac{*}{7}$ 712005147120051363012005282171200513633120051382201205144 <td>11</td> <td>1200S</td> <td>33</td> <td>61</td> <td>1200T19</td> <td>48</td> <td>199</td> <td>1200S</td> <td>91</td>	11	1200S	33	61	1200T19	48	199	1200S	91
13 1200T19 50 63 1200S 12 201 1200S 92 14 1200S 49 64 1200S 59 202 1200S 36 15 1200S 27 65 1200S 60 203 1200S 36 16 1200S 23 66 1200S 61 204 1200S 57 17 1200S 23 66 1200S 64 206 1200S 84 19 1200S 24 69 1200S 72 208 1200S 143 20 1200S 34 70 1200S 72 208 1200S 143 21 1200S 46 71 1200S 73 212 1200S 71 24 1200S 16 74 1200S 73 212 1200S 145 27 1200S 14 1200S 73 214 1200S <td>12</td> <td>1200S</td> <td>37</td> <td>62</td> <td>1200S</td> <td>80</td> <td>200</td> <td>1200S</td> <td>56</td>	12	1200S	37	62	1200S	80	200	1200S	56
141200S49641200S592021200S36151200S27651200S602031200S66161200S32661200S612041200S57171200S23671200S622051200S70181200S26681200S642061200S84191200S34701200S652071200S143211200S34701200S632101200S147231200T1949731200S872111200S147231200S16741200S732121200S16241200S16751200S742131200S161251200S15761200S752141200S144261200S45761200S752141200S145271200S142151200S145136130136301200S292171200S136136130136331200S252211200S138136139341200S972221200S137139341200S972221200S134139341200S972221200S134	13	1200T19	50	63	1200S	12	201	1200S	92
15 1200S 27 65 1200S 60 203 1200S 66 16 1200S 32 66 1200S 61 204 1200S 57 17 1200S 23 67 1200S 62 205 1200S 70 18 1200S 24 69 1200S 64 206 1200S 144 20 1200S 34 70 1200S 63 210 1200S 143 21 1200S 16 74 1200S 63 210 1200S 71 23 1200T19 49 73 1200S 73 212 1200S 76 24 1200S 15 75 1200S 75 214 1200S 145 26 1200S 15 76 1200S 75 214 1200S 145 27 1200S 17 $& \times 778 \sim 188 (14)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$	14	1200S	49	64	1200S	59	202	1200S	36
16 1200S 32 66 1200S 61 204 1200S 57 17 1200S 23 67 1200S 62 205 1200S 70 18 1200S 26 68 1200S 64 206 1200S 84 19 1200S 24 69 1200S 65 207 1200S 144 20 1200S 34 70 1200S 63 210 1200S 15 21 1200S 18 72 1200S 63 210 1200S 147 23 1200T19 49 73 1200S 73 212 1200S 76 25 1200S 15 75 1200S 74 213 1200S 145 27 1200S 14 215 1200S 137 28 1200S 17 $\overline{X}77 \sim 188$ $\overline{X}17 \sim 182$ 1217 1200S 136	15	1200S	27	65	1200S	60	203	1200S	66
17 1200s 23 67 1200s 62 205 1200s 70 18 1200s 26 68 1200s 64 206 1200s 84 19 1200s 24 69 1200s 65 207 1200s 144 20 1200s 34 70 1200s 72 208 1200s 143 21 1200s 46 71 1200s 63 210 1200s 52 22 1200s 16 74 1200s 73 212 1200s 71 24 1200s 15 75 1200s 74 213 1200s 101 26 1200s 14 215 1200s 145 27 1200s 14 215 1200s 142 28 1200s 17 $\$ %77~187 8787 216 1200s 136 30 1200s <td>16</td> <td>1200S</td> <td>32</td> <td>66</td> <td>1200S</td> <td>61</td> <td>204</td> <td>1200S</td> <td>57</td>	16	1200S	32	66	1200S	61	204	1200S	57
18 1200S 26 68 1200S 64 206 1200S 84 19 1200S 24 69 1200S 65 207 1200S 144 20 1200S 34 70 1200S 72 208 1200S 143 21 1200S 46 71 1200S 89 209 1200S 52 22 1200S 18 72 1200S 63 210 1200S 71 24 1200S 16 74 1200S 73 212 1200S 76 25 1200S 15 75 1200S 74 213 1200S 101 26 1200S 14 215 1200S 142 28 1200S 17 $\%7R \sim 188R!###!#!#!#!#!!#!!#!!#!!#!!#!!#!!#!#!#!#!$	17	1200S	23	67	1200S	62	205	1200S	70
191200S24691200S652071200S144201200S34701200S722081200S143211200S46711200S892091200S52221200S18721200S632101200S147231200T1949731200S872111200S76241200S16741200S732121200S76251200S15751200S742131200S145261200S45761200S752141200S145271200S142151200S142281200S17 $\notherefore\notherefore136301200S202181200S136311200S282191200S135321200S382201200S135331200S252211200S135341200S92221200S134361200S72221200S134391200S192231200S134391200S192261200S134391200S192261200S134391200S1923112$	18	1200S	26	68	1200S	64	206	1200S	84
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	1200S	24	69	1200S	65	207	1200S	144
21 $1200S$ 46 71 $1200S$ 89 209 $1200S$ 52 22 $1200S$ 18 72 $1200S$ 63 210 $1200S$ 147 23 $1200T19$ 49 73 $1200S$ 87 211 $1200S$ 71 24 $1200S$ 16 74 $1200S$ 73 212 $1200S$ 76 25 $1200S$ 15 75 $1200S$ 74 213 $1200S$ 101 26 $1200S$ 45 76 $1200S$ 74 213 $1200S$ 142 27 $1200S$ 44 215 $1200S$ 142 28 $1200S$ 17 $\divideontimes77R \sim 188r$ $188r$ 216 $1200S$ 136 30 $1200S$ 28 217 $1200S$ 146 31 $1200S$ 28 218 $1200S$ 146 31 $1200S$ 25 221 $1200S$ 135 32 $1200S$ 38 222 $1200S$ 139 34 $1200S$ 97 221 $1200S$ 134 36 $1200S$ 7 224 $1200T19$ 19 37 $1200S$ 99 225 $1200S$ 134 39 $1200S$ 19 224 $1200S$ 134 39 $1200S$ 19 224 $1200S$ 132	20	1200S	34	70	1200S	72	208	1200S	143
22 1200S18 72 1200S 63 210 1200S 147 23 1200T1949 73 1200S 87 211 1200S 71 24 1200S16 74 1200S 73 212 1200S 76 25 1200S15 75 1200S 74 213 1200S 101 26 1200S 45 76 1200S 77 214 1200S 144 215 1200S 144 2155 1200S 142 28 1200S 17 $*77R\sim 1887$ 887 217 1200S 137 29 1200S 20 217 1200S 136 30 1200S 28 218 1200S 146 31 1200S 29 219 1200S 55 32 1200S 38 220 1200S 137 33 1200S 25 221 1200S 140 35 1200S 11 223 1200S 140 36 1200S 97 224 1200T19 19 37 1200S 90 225 1200S 134 39 1200S 19 227 1200S 134 39 1200S 19 228 1200S 132 41 1200S 85 230 1206 131 43 1200S 95 233 1200S 132 44 1200S 86 232 2331200S	21	1200S	46	71	1200S	89	209	1200S	52
23 $1200T19$ 49 73 $1200S$ 87 211 $1200S$ 71 24 $1200S$ 16 74 $1200S$ 73 212 $1200S$ 76 25 $1200S$ 15 75 $1200S$ 74 213 $1200S$ 101 26 $1200S$ 45 76 $1200S$ 75 214 $1200S$ 145 27 $1200S$ 14 215 $1200S$ 142 28 $1200S$ 17 $\& 77R \sim 188R i # # # * * * * * * * * * * * * * * * *$	22	1200S	18	72	1200S	63	210	1200S	147
24 $1200S$ 16 74 $1200S$ 73 212 $1200S$ 76 25 $1200S$ 15 75 $1200S$ 74 213 $1200S$ 101 26 $1200S$ 45 76 $1200S$ 75 214 $1200S$ 145 27 $1200S$ 14 215 $1200S$ 142 28 $1200S$ 17 $\&77R \sim 188R i i i i i i i i i i i i i i i i i i $	23	1200T19	49	73	1200S	87	211	1200S	71
25 $1200s$ 15 75 $1200s$ 74 213 $1200s$ 101 26 $1200s$ 45 76 $1200s$ 75 214 $1200s$ 145 27 $1200s$ 14 215 $1200s$ 142 28 $1200s$ 17 $\& 77r \sim 188rti ##et # * \times \times$	24	1200S	16	74	1200S	73	212	1200S	76
26 $1200S$ 45 76 $1200S$ 75 214 $1200S$ 145 27 $1200S$ 14 215 $1200S$ 142 28 $1200S$ 17 $\%77R \sim 188R$ i i i i i i i i i i	25	1200S	15	75	1200S	74	213	1200S	101
27 $1200S$ 14 215 $1200S$ 142 28 $1200S$ 17 $\%77R \sim 188R$ iggly to $y > y$ 216 $1200S$ 137 29 $1200S$ 20 217 $1200S$ 136 30 $1200S$ 28 218 $1200S$ 146 31 $1200S$ 29 219 $1200S$ 55 32 $1200S$ 38 220 $1200S$ 135 33 $1200S$ 25 221 $1200S$ 135 33 $1200S$ 25 221 $1200S$ 139 34 $1200S$ 9 222 $1200S$ 140 35 $1200S$ 11 223 $1200S$ 138 36 $1200S$ 97 224 $1200T19$ 19 37 $1200S$ 90 225 $1200T19$ 45 38 $1200S$ 7 226 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 47 40 $1200S$ 85 228 $1200S$ 132 42 $1200S$ 95 230 $1200S$ 131 43 $1200S$ 94 231 $1200S$ 128 45 $1200S$ 93 233 $1200S$ 128 45 $1200S$ 83 234 $1200S$ 133 47 $1200S$ 85 236 235 $1200S$ 48 $1200S$ 82 236 $1200S$ 133 <tr<< td=""><td>26</td><td>1200S</td><td>45</td><td>76</td><td>1200S</td><td>75</td><td>214</td><td>1200S</td><td>145</td></tr<<>	26	1200S	45	76	1200S	75	214	1200S	145
28 $1200S$ 17 $\fillet{M}{M}$ <td>27</td> <td>1200S</td> <td>14</td> <td></td> <td></td> <td></td> <td>215</td> <td>1200S</td> <td>142</td>	27	1200S	14				215	1200S	142
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28	1200S	17	※ 77R∼188	Rは鋼製セグメ	ント	216	1200S	137
30 $1200S$ 28 218 $1200S$ 146 31 $1200S$ 29 219 $1200S$ 55 32 $1200S$ 38 220 $1200S$ 135 33 $1200S$ 25 221 $1200S$ 139 34 $1200S$ 9 2221 $1200S$ 139 34 $1200S$ 9 2222 $1200S$ 140 35 $1200S$ 11 223 $1200S$ 138 36 $1200S$ 97 224 $1200T19$ 19 37 $1200S$ 90 225 $1200T19$ 45 38 $1200S$ 7 226 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 126 41 $1200S$ 85 228 $1200S$ 126 41 $1200S$ 95 230 $1200S$ 131 43 $1200S$ 94 231 $1200S$ 141 44 $1200S$ 86 232 $1200S$ 128 45 $1200S$ 93 233 $1200S$ 127 46 $1200S$ 83 234 $1200S$ 130 48 $1200S$ 82 236 $1200S$ 119	29	1200S	20				217	1200S	136
31 $1200S$ 29 219 $1200S$ 55 32 $1200S$ 38 220 $1200S$ 135 33 $1200S$ 25 221 $1200S$ 139 34 $1200S$ 9 222 $1200S$ 140 35 $1200S$ 11 223 $1200S$ 138 36 $1200S$ 97 224 $1200T19$ 19 37 $1200S$ 90 225 $1200T19$ 45 38 $1200S$ 7 226 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 47 40 $1200S$ 85 228 $1200S$ 126 41 $1200S$ 95 230 $1200S$ 131 43 $1200S$ 94 231 $1200S$ 141 44 $1200S$ 86 232 $1200S$ 128 45 $1200S$ 93 233 $1200S$ 127 46 $1200S$ 83 234 $1200S$ 133 47 $1200S$ 6 235 $1200S$ 133 48 $1200S$ 82 236 $1200S$ 119	30	1200S	28				218	1200S	146
32 $1200S$ 38 25 220 $1200S$ 135 33 $1200S$ 25 221 $1200S$ 139 34 $1200S$ 9 222 $1200S$ 140 35 $1200S$ 11 223 $1200S$ 138 36 $1200S$ 97 224 $1200T19$ 19 37 $1200S$ 90 225 $1200T19$ 45 38 $1200S$ 7 226 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 47 40 $1200S$ 85 228 $1200S$ 126 41 $1200S$ 85 229 $1200S$ 132 42 $1200S$ 95 230 $1200S$ 131 43 $1200S$ 94 231 $1200S$ 128 45 $1200S$ 93 233 $1200S$ 127 46 $1200S$ 83 234 $1200S$ 133 47 $1200S$ 6 235 $1200S$ 130 48 $1200S$ 82 236 $1200S$ 119	31	1200S	29				219	1200S	55
33 $1200S$ 25 221 $1200S$ 139 34 $1200S$ 9 222 $1200S$ 140 35 $1200S$ 11 223 $1200S$ 138 36 $1200S$ 97 224 $1200T19$ 19 37 $1200S$ 90 225 $1200T19$ 45 38 $1200S$ 7 226 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 47 40 $1200S$ 85 228 $1200S$ 126 41 $1200S$ 85 229 $1200S$ 132 42 $1200S$ 95 230 $1200S$ 131 43 $1200S$ 94 231 $1200S$ 141 44 $1200S$ 86 232 $1200S$ 128 45 $1200S$ 93 233 $1200S$ 127 46 $1200S$ 83 234 $1200S$ 133 47 $1200S$ 6 235 $1200S$ 130 48 $1200S$ 82 236 $1200S$ 119	32	1200S	38				220	1200S	135
34 $1200S$ 9 222 $120S$ 140 35 $1200S$ 11 223 $1200S$ 138 36 $1200S$ 97 224 $1200T19$ 19 37 $1200S$ 90 225 $1200T19$ 45 38 $1200S$ 7 226 $1200S$ 134 39 $1200S$ 19 227 $1200S$ 47 40 $1200S$ 85 228 $1200S$ 126 41 $1200S$ 85 229 $1200S$ 132 42 $1200S$ 95 230 $1200S$ 131 43 $1200S$ 94 231 $1200S$ 141 44 $1200S$ 86 232 $1200S$ 128 45 $1200S$ 93 233 $1200S$ 127 46 $1200S$ 83 234 $1200S$ 133 47 $1200S$ 6 235 $1200S$ 130 48 $1200S$ 82 236 $1200S$ 119 49 $1200S$ 48 237 $1200S$ 120	33	1200S	25				221	1200S	139
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	1200S	9				222	1200S	140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	1200S	11				223	1200S	138
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	1200S	97	1			224	1200T19	19
38 1200S 7 226 1200S 134 39 1200S 19 227 1200S 47 40 1200S 85 228 1200S 126 41 1200S 21 229 1200S 132 42 1200S 95 230 1200S 131 43 1200S 94 231 1200S 141 44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	37	1200S	90				225	1200T19	45
39 1200S 19 227 1200S 47 40 1200S 85 228 1200S 126 41 1200S 21 229 1200S 132 42 1200S 95 230 1200S 131 43 1200S 94 231 1200S 141 44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	38	1200S	7	1			226	1200S	134
40 1200S 85 228 1200S 126 41 1200S 21 229 1200S 132 42 1200S 95 230 1200S 131 43 1200S 94 231 1200S 141 44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	39	1200S	19	1			227	1200S	47
41 1200S 21 229 1200S 132 42 1200S 95 230 1200S 131 43 1200S 94 231 1200S 141 44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	40	1200S	85	1			228	1200S	126
42 1200S 95 230 1200S 131 43 1200S 94 231 1200S 141 44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	41	1200S	21				229	1200S	132
43 1200S 94 231 1200S 141 44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	42	1200S	95	1			230	1200S	131
44 1200S 86 232 1200S 128 45 1200S 93 233 1200S 127 46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	43	1200S	94				231	1200S	141
45 1200s 93 233 1200s 127 46 1200s 83 234 1200s 133 47 1200s 6 235 1200s 130 48 1200s 82 236 1200s 119 49 1200s 48 237 1200s 120	44	1200S	86				232	1200S	128
46 1200S 83 234 1200S 133 47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	45	1200S	93				233	1200S	127
47 1200S 6 235 1200S 130 48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	46	1200S	83				234	1200S	133
48 1200S 82 236 1200S 119 49 1200S 48 237 1200S 120	47	1200S	6				235	1200S	130
49 1200S 48 237 1200S 120	48	1200S	82				236	1200S	119
1	49	12005	48				237	12008	120
50 1200S 10 238 1200S 121	50	1200S	10				238	1200S	121

図 4.37 セグメント組立帳票(例)

