第7章 調査、予測及び評価の手法及び結果

第7章 調査、予測及び評価の手法及び結果

7.1 大気質

7.1.1 現況調査

(1) 文献その他の資料調査

1) 調査項目

調査項目は、以下のとおりとしました。

- ・大気質(二酸化硫黄、一酸化窒素、二酸化窒素、浮遊粒子状物質、塩化水素、水銀 及びその化合物、ダイオキシン類、降下ばいじん量)
- ・気象(風向、風速、日射量、放射収支量、雲量)

2) 調査手法

調査手法は、既存資料の収集整理としました。

3) 調査地域・地点

調査地域及び地点は、事業計画地周辺としました。

4) 調査時期

調査時期は、大気質については、事業計画地周辺の大気質の状況を把握できる期間として「廃棄物処理施設生活環境影響調査指針」(平成18年 環境省大臣官房廃棄物・リサイクル対策部)に示されるとおり、最新年度を対象としました。気象については、風向及び風速は過去10年間とし、基準年の異常年検定を実施しました。また、気象のその他の項目については事業計画地周辺の状況を把握できる期間として、過去5年間としました。

5) 調査結果

調査結果は、「第3章 事業の実施を予定している区域及びその周辺の概況」に記載のとおりです。また、異常年検定は、「資料2-1 気象の異常年検定結果」に記載のとおりです。なお、塩化水素、降下ばいじん量及び放射収支量は、事業計画地周辺で測定されていません。

(2) 現地調査

1) 調査項目

気象及び大気質の調査項目を表 7.1-1に示します。

気象の調査は、事業計画地及びその近隣の気象状況の現況把握と予測に係る気象条件の 設定等を目的に実施しました。また、大気質の調査は、事業計画地及びその周辺における 大気汚染物質濃度の現況把握とバックグラウンド濃度の設定等を目的に実施しました。

表 7.1-1 気象・大気質の調査項目 調査項目

項	目	調査項目
気象	地上気象	気温、湿度、風向・風速、日射量、放射収支量
メル多	上層気象	上層風向・風速、鉛直気温
大気質	一般環境	二酸化硫黄、窒素酸化物、浮遊粒子状物質、塩化水素、水銀及びそ の化合物、ダイオキシン類、降下ばいじん量(粉じん)
////A	道路沿道	窒素酸化物、浮遊粒子状物質

2) 調査の手法

気象及び大気質の現地調査に係る調査の手法を表 7.1-2に示します。

		項目	調査の手法
気象	地上気象	気温、湿度 風向・風速 日射量	「地上気象観測指針」(平成14年気象庁)、 「環境大気常時監視実務推進マニュアル(第3版)」(社団法人日本環境技術協会) ^注 に準拠 「環境大気常時監視実務推進マニュアル(第3版
		放射収支量上層風向・風速、)」(社団法人日本環境技術協会) ^注 に準拠
	上層気象	鉛直気温	「高層気象観測指針」(平成7年気象庁)に準拠
		二酸化硫黄	「大気の汚染に係る環境基準について」(昭和 48年環境庁告示第25号)に準拠
		窒素酸化物	「二酸化窒素に係る環境基準について」(昭和 53年環境庁告示第38号)に準拠
		浮遊粒子状物質	「大気の汚染に係る環境基準について」(昭和 48年環境庁告示第25号)に準拠
	一般環境	塩化水素	「大気汚染物質測定法指針第3章20」環境大気中の塩化物測定法(昭和62年環境庁)に準拠
大気質		水銀及びその化合物	「有害大気汚染物質測定マニュアル」(平成31 年改訂)に準拠
		ダイオキシン類	「ダイオキシン類に係る大気環境調査マニュアル」(平成20年3月環境省)に準拠
		降下ばいじん量 (粉じん)	ダストジャーによる試料採取方法
	道路沿道	窒素酸化物	「二酸化窒素に係る環境基準について」(昭和 53年環境庁告示第38号)に準拠
	地 陷但地	浮遊粒子状物質	「大気の汚染に係る環境基準について」(昭和 48年環境庁告示第25号)に準拠

表 7.1-2 気象・大気質の調査の手法

注:有効測定日数の考え方を踏まえ、実施計画書の手法から追加・変更しています。

3) 調査地域・地点

気象及び大気質の調査地域は、環境影響を受けるおそれがあると認められる事業計画地から半径1,000mの範囲並びに工事用車両及び廃棄物運搬車両等の運行ルート沿道としました。

気象及び大気質の調査の対象とした地点は、表 7.1-3及び図 7.1-1に示すとおりです。 地上気象及び上層気象については、既存の建築物や地形の影響を受けずに、事業計画地 及びその近隣の気象の状況を適切に把握できる地点として、近接する渕崎公園の1地点と しました。

一般環境大気質については、調査地域の一般的な環境濃度の現況把握のため、事業計画 地内の1地点のほか、四方位の現況把握のため事業計画地周辺4地点を選定し、計5地点を 調査地点としました。また、排出ガスに係る簡易拡散予測を行った結果、最大着地濃度出 現距離が事業計画地から約700mと算出されたことを踏まえ、影響が想定される範囲として、 事業計画地を中心とする半径1,000mを目安に調査地点を選定しています。なお、降下ばい じん量(粉じん)は、事業計画地内の1地点としました。

また、道路沿道大気質については、沿道濃度の現況把握のため、工事用車両及び廃棄物 運搬車両等の運行する道路沿道における住宅地や学校等の付近の地点として、主要運行ル ートの3地点を調査地点としました。

表 7.1-3 気象・大気質の調査地点

	項目	調査均	也点
気象	地上気象	気温、湿度、風向・風速、 日射量、放射収支量	1地点(渕崎公園)
N/S/	上層気象	上層風向・風速、鉛直気温	
	一般環境	二酸化硫黄 窒素酸化物 浮遊粒子状物質 塩化水素 水銀及びその化合物 ダイオキシン類	■KT2:事業計画地 1地点 ■事業計画地周辺 4地点 ・KT1:東雲三丁目集会所 ・KT3:柞木公園 ・KT4:府中町向洋駅周辺区画整 理事務所 ・KT5:本浦公園 ^注
大気質		降下ばいじん量(粉じん)	■KT2:事業計画地 1地点
	关ゆ狐关	窒素酸化物	■主要運行ルート 3地点 ・JT1:市道南3区129号線沿道 (南環境事務所) ・JT2:一般国道2号沿道
	道路沿道	浮遊粒子状物質	(渕崎会館) • JT3:一般県道広島海田線沿道 (南消防署青崎出張所新 庁舎建設予定地)

注:実施計画書についての市民意見を踏まえ、調査地点として追加選定しました。

図 7.1-1(1) 気象及び大気質の調査地点(広域)

図 7.1-1(2) 気象及び大気質の調査地点 (詳細)

4) 調査時期

気象及び大気質の調査期間・時期を表 7.1-4に示します。

調査期間は、4季(夏季、秋季、冬季、春季)又は年間の大気質や気象の状況が把握できる期間としました。また、現南工場が通常稼働していること、道路交通状況が通常と異なる時期でないことなど、代表的な状況が把握できるよう考慮して実施しました。

項目 調查期間 • 時期 風向・風速、 1年間連続 地上 令和2年6月1日(月)~令和3年5月31日(月) 気温・湿度、 気象 日射量、放射収支量 気象 夏季:令和2年 7月31日(金)~ 8月 4日(火) 上層 秋季:令和2年10月 8日(木)~10月12日(月) 気温、風向・風速 気象 冬季: 令和3年 1月14日 (木) ~ 1月18日 (月) 春季: 令和3年 3月24日 (水) ~ 3月28日 (日) 夏季:令和2年7月31日(金)~8月6日(木) 二酸化硫黄 秋季: 令和2年10月 8日 (木) ~10月14日 (水) 窒素酸化物 冬季: 令和3年 1月14日(木)~ 1月20日(水) 浮遊粒子状物質 春季: 令和3年 3月24日(水)~ 3月30日(火) 塩化水素 一般 水銀及びその化合物 環境 ダイオキシン類 夏季:令和2年7月21日(火)~8月20日(木) 大気質 降下ばいじん量 秋季:令和2年10月10日(土)~11月9日(月) (粉じん) 冬季: 令和3年 1月16日(十)~ 2月15日(月) 春季:令和3年3月8日(月)~4月7日(水) 夏季: 令和2年 7月31日 (金) ~ 8月 6日 (木) 窒素酸化物 道路 秋季: 令和2年10月 8日(木)~10月14日(水) 冬季:令和3年 1月14日(木)~ 1月20日(水) 沿道 浮遊粒子状物質 春季:令和3年3月24日(水)~3月30日(火)

表 7.1-4 気象・大気質の調査時期等

5) 調査結果

(a) 地上気象

a) 風向、風速

風向・風速の概況を表 7.1-5及び図 7.1-2に示します。

年間を通じた最多風向は北北東で、出現頻度は16.1%、平均風速は1.9m/秒、静穏率は5.9%でした。

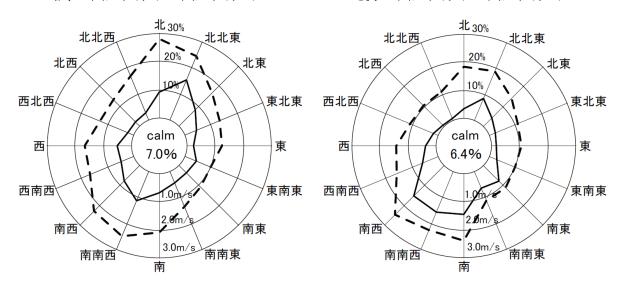
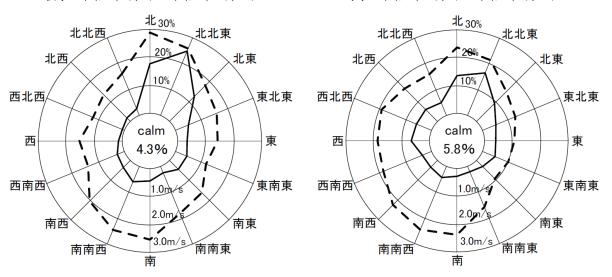
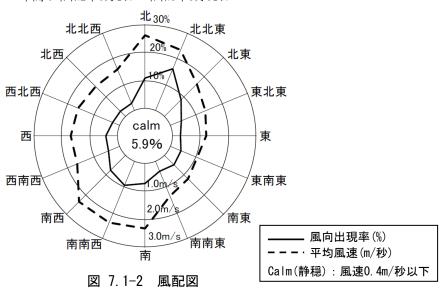

2X 7. 1 0 /24(P) /24(2E) 07 (P)(7)(
項目				令和2年				令和3年					年間
- 垻日	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月	5月	十间
最多風向	南西	南南西	南	北北東	北北東	北北東	北北東	北北東	北北東	北北東	北北東	南南西	北北東
最多風向の 出現頻度(%)	14.0	17. 1	17. 7	23. 3	28. 6	18.8	17. 1	18. 3	13. 5	22. 2	15. 7	18. 4	16. 1
平均風速 (m/秒)	1. 7	1.6	1. 9	2. 4	2. 3	1. 7	1.6	1. 7	1. 9	1.9	1. 9	1.8	1. 9
静穏率(%)	5. 3	11.3	2.6	3. 1	2. 6	6.8	5.8	6. 0	5. 7	7. 1	6. 9	7. 0	5. 9

表 7.1-5 風向・風速の概況

注:風速0.4m/秒以下を静穏としました。


春季:令和3年3月1日~令和3年5月31日

夏季:令和2年6月1日~令和2年8月31日



秋季:令和2年9月1日~令和2年11月30日

冬季: 令和2年12月1日~令和3年2月28日

年間:令和2年6月1日~令和3年5月31日

b) 気温·湿度

気温・湿度の概況を表 7.1-6に示します。

年平均気温は17.2 $^{\circ}$ 、年最高気温は36.4 $^{\circ}$ 、年最低気温は-4.3 $^{\circ}$ 、年平均湿度は70%でした。

表 7.1-6 気温・湿度の概況

20 10 10 10 10 10 10 10 10 10 10 10 10 10														
	項目				令和2年				令和3年					年間
	快日	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月	5月	十间
気	平均	24. 2	25. 2	29. 9	25. 0	18.8	14. 4	7. 5	5. 4	8. 5	12.2	15. 4	19.6	17. 2
気温(℃)	最高	31.8	32. 7	36. 4	35. 5	27. 3	26. 0	16. 9	16. 0	20. 5	21.7	26. 0	27.9	36. 4
0)	最低	17. 9	18. 7	24. 2	16.8	8.6	5. 7	-0.2	-4. 3	-1.5	2. 2	5. 3	8. 2	-4.3
湿	平均	76	84	72	72	68	71	68	69	63	66	60	72	70
湿度(%)	最高	99	99	91	97	98	97	97	97	98	98	97	98	99
/0	最低	40	54	47	30	32	34	36	33	26	23	17	16	16

c) 日射量、放射収支量

日射量及び放射収支量の概況を表 7.1-7に示します。

日射量の年平均値は0.167kW/m²、放射収支量の年平均値は0.063kW/m²でした。

表 7.1-7 日射量、放射収支量の概況

項目	令和2年							令和3年					年間
- 現日	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月	5月	十旧
平均日射量 (kW/m²)	0. 201	0. 150	0. 249	0. 170	0. 162	0. 123	0. 098	0. 107	0. 152	0. 173	0. 220	0. 193	0. 167
平均放射収支 量(kW/m²)	0. 094	0.079	0. 137	0.070	0.057	0.028	0.006	0. 012	0. 037	0.059	0.091	0.086	0.063

d) 大気安定度

日射量(昼間)、放射収支量(夜間)及び地上風速の調査結果を用いて、表 7.1-8 に示すパスキル安定度階級分類表によって分類した大気安定度の出現頻度は、表 7.1-9に示すとおりです。

表 7.1-8 パスキル安定度階級分類表

風速(U)		日射量(T	(kW/m^2)		放射収支量 (Q) (kW/m²)			
m/秒	T≧0.60	$0.60 > T \ge 0.30$	0.30>T≧ 0.15	0.15>T	Q≧-0.020	$-0.020 > Q$ ≥ -0.040	-0.040>Q	
U<2	A	A-B	В	D	D	G	G	
2≦U<3	А-В	В	С	D	D	Е	F	
3≦U<4	В	В-С	С	D	D	D	Е	
4≦U<6	С	C-D	D	D	D	D	D	
6≦U	С	D	D	D	D	D	D	

注1:昼間(日の出~日の入)は日射量、夜間(日の入~日の出)は放射収支量を用いています。注2:A:強不安定、B:並不安定、C:弱不安定、D:中立、E:弱安定、F:並安定、G:強安定出典:「窒素酸化物総量規制マニュアル [新版]」(平成12年12月、公害研究対策センター)

表 7.1-9 大気安定度出現頻度

単位:%

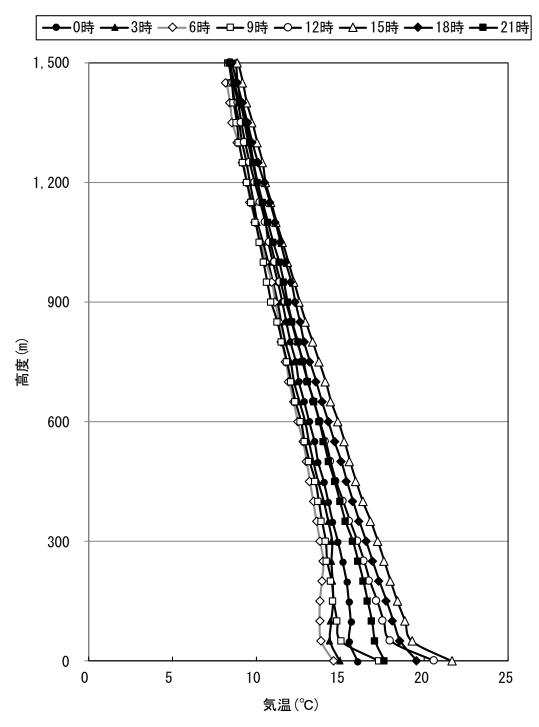
期間			不多	定定			中立		安定		
朔间	A	А-В	В	В-С	С	C-D	D(昼)	D(夜)	Е	F	G
春季	0.9	2.7	3. 1	0.5	1.2	0.3	5. 1	2.5	0.8	1.3	7. 2
夏季	0.7	2.7	3. 7	0.6	1.3	0.1	5.5	4.0	0.7	0.2	5. 9
秋季	0.5	2. 1	2.5	0.6	1.2	0.5	3.9	2.9	1.9	2. 1	6.0
冬季	0.2	2. 1	2. 7	0.7	0.9	0.3	3.9	1.5	1.2	2. 2	9.4
年間	2.2	9.6	11.9	2.4	4. 7	1.2	18.4	10.8	4.5	5.8	28.4
十间			32	. 1			29	. 2		38. 7	

注1:出現頻度は、四捨五入の関係で合計が一致しないことがあります。

注2:風速の集計高さは、煙突高さとなる地上59mとしました。

(b) 上層気象

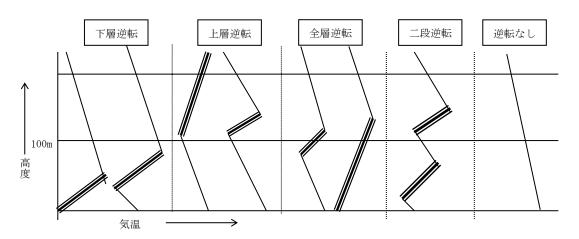
a) 気温


7) 鉛直気温

鉛直気温を高度ごとに平均した結果を表 7.1-10及び図 7.1-3に示します。 0時の高度50~100m、3時の高度50~150m、6時の高度150~250mにおいて気温の逆転が見られました。

表 7.1-10 鉛直気温調査結果 (気温の鉛直分布、通年)

高度		7. 1 10 <u>y</u>		気温		<u>, 10, 70, 70, 70, 70, 70, 70, 70, 70, 70, 7</u>		
(m)	0時	3時	6時	9時	12時	15時	18時	21時
1. 5	16.0	15.0	14.6	17.3	20.6	21.6	19.5	17.6
50	15. 5	14. 4	13. 9	15.0	18.0	19.3	18.6	17. 1
100	15.6	14. 5	13.8	14.8	17.6	18.9	18.1	16. 9
150	15. 5	14.6	13.8	14. 6	17. 2	18.4	17.7	16.6
200	15.4	14.5	13.9	14. 5	16.8	18.0	17.3	16. 4
250	15. 1	14.5	14.0	14. 2	16.4	17.6	16.9	16. 1
300	14.9	14.5	13.8	14. 1	16.0	17.2	16.5	15. 7
350	14.5	14.3	13.6	13.9	15.6	16.8	16.1	15.3
400	14.3	14.0	13.4	13.7	15. 2	16.3	15.8	15.0
450	14.0	13.7	13. 2	13.5	14.7	15.9	15.4	14. 7
500	13.7	13.4	13.0	13. 1	14.4	15.6	15. 1	14. 3
550	13.5	13. 1	12.8	12. 9	14. 1	15.3	14.7	14.0
600	13.2	12.9	12.5	12.6	13.8	14.9	14.3	13.8
650	12.9	12.6	12. 2	12.3	13.4	14.5	13.9	13. 4
700	12.5	12.2	12.0	12. 1	13.1	14.1	13.6	13. 1
750	12.3	12.0	11.8	11.8	12.8	13.7	13.2	12.7
800	12.0	11.7	11.5	11.5	12.4	13.3	12.8	12.5
850	11.8	11.5	11.4	11. 2	12.1	12.9	12.6	12. 1
900	11.5	11.2	11.1	10.9	11.8	12.6	12.3	11.9
950	11.3	11.0	10.9	10.6	11.4	12.2	12.1	11.6
1,000	11.0	10.7	10.6	10.4	11.1	11.9	11.8	11.4
1,050	10.7	10.4	10.3	10.2	10.8	11.6	11.4	11.0
1, 100	10.5	10.0	10.0	9. 9	10.5	11.2	11.2	10.7
1, 150	10.3	9.8	9.6	9. 7	10.2	10.9	10.8	10.4
1, 200	10.0	9.6	9.4	9. 4	9. 9	10.5	10.5	10.1
1, 250	9.8	9.4	9.2	9. 2	9.6	10.4	10.1	9.8
1, 300	9. 5	9.1	8.9	9.0	9.3	10.0	9.8	9.6
1,350	9.3	8.9	8.6	8.8	9. 1	9.8	9.5	9. 4
1,400	9. 1	8.7	8.4	8.6	8. 9	9.4	9.2	9.0
1,450	8.9	8.5	8.2	8. 5	8.6	9.2	8.9	8. 7
1,500	8.8	8.4	8.1	8.3	8.4	8.9	8.6	8.4


注:各高度データは春季調査、夏季調査、秋季調査、冬季調査における対象時間データの平均値です。

注:各気温データは春季調査、夏季調査、秋季調査、冬季調査における対象時間データの平均値です。 図 7.1-3 鉛直気温調査結果(通年)

() 逆転層の出現頻度

逆転層の出現頻度を表 7.1-11に示します。逆転層の判定は、高度50mごとに整理した気温観測結果を基に、上層の気温が下層の気温より高い場合を逆転層としました。また、逆転層の指定高度は、新南工場の煙突高さ(59m)を勘案し100mと設定して、図 7.1-4に示すとおり、下層逆転、上層逆転、全層逆転、二段逆転と分類しました。指定高度を100mとした場合の逆転層の発生状況を見ると、昼間は上層逆転、夜間は全層・二段逆転が最も多い結果となりました。

注1:逆転層区分の指定高度は100mとして、逆転層が指定高度より低い場合を下層逆転、指定高度より高い場合を上層逆転、指定高度をまたぐ場合を全層逆転、区分高度の上と下にあるものを二段逆転とし、下層逆転、上層逆転、全層・二段逆転、逆転なしの4区分で集計しました。

注2:上限高度は500mに設定し、これより高い高度において観測された逆転層は「逆転なし」に区分しました。

注3:上下の層の温度差が0.1℃以下の場合は有意のある温度差と認めません。但し、上下の温度差が0.1℃の層が2層以上に連続していた場合、有意のある温度差と認めます。

図 7.1-4 逆転層の区分(指定高度100mの場合)

表 7.1-11 逆転層の出現頻度(指定高度100m)

接換時刻 下層速転 上層速転 上層速転 接換 接換 接換 接換 接換 接換 接換 接			7. 1-11 12	出る一	707A/X (10		'/	
世子 夜間 13 6 25 41 85		観測	時刻	下層逆転	上層逆転	全層· 二段	逆転なし	観測日数
及問 13 6 25 41 85	涌在	昼	:間	1	17	7	50	75
夏季 昼間 9:00 0 1 0 4 5 12:00 0 0 0 0 5 5 15:00 0 1 0 4 5 18:00 0 0 0 5 5 夜間 21:00 0 1 0 4 5 3:00 0 1 0 4 5 4 5 0 0 1 0 4 5 5 21:00 0 1 0 4 5 5 4 12:00 0 0 0 0 5 5 5 5 18:00 0 0 0 0 5 5 5 6 00 0 0 0 0 5 5 5 5 6 00 0 0 0 0 1 4 5 5 5 5 6 6 6 0 0 1 4 5 <	地十	夜	間	13	6	25	41	85
夏季 昼間 12:00 0 0 0 5 5 15:00 0 1 0 4 5 18:00 0 0 0 0 5 5 夜間 0:00 2 2 0 1 5 3:00 0 1 2 2 5 3:00 0 1 2 2 5 4 12:00 0 0 0 0 5 5 15:00 0 0 0 0 5 5 18:00 0 0 0 0 5 5 21:00 0 0 0 0 5 5 6:00 0 0 0 0 5 5 5 0 0 0 0 0 5 5 6:00 0 0 0 0 0 5 5 6:00 0 0 0 0 1 4 5 7 18:00 3 0 0 2 5 8 21:00 0 0 0 1 1 5 6:00 </td <td></td> <td></td> <td>6:00</td> <td>0</td> <td>2</td> <td>0</td> <td>3</td> <td>5</td>			6:00	0	2	0	3	5
夏季 15:00 0 1 0 4 5 夜間 21:00 0 1 0 4 5 夜間 0:00 2 2 0 1 5 3:00 0 1 2 2 5 9:00 0 3 0 2 5 12:00 0 0 0 5 5 18:00 0 0 0 5 5 21:00 0 0 0 5 5 21:00 0 0 0 5 5 21:00 0 0 0 5 5 4 0:00 0 0 0 5 5 5 5 5 5 5 6:00 0 0 0 0 5 5 5 6:00 0 0 1 4 5 7 7 7 7 7 7 7 7 7 8 8 8 8 9 0 0 0 1 4 5 1 8 8 8 7 7 7 <td< td=""><td></td><td></td><td>9:00</td><td>0</td><td>1</td><td>0</td><td>4</td><td>5</td></td<>			9:00	0	1	0	4	5
大季 18:00		昼間	12:00	0	0	0	5	5
A	百玉		15:00	0	1	0	4	5
夜間 0:00 2 2 0 1 5 3:00 0 1 2 2 5 9:00 0 3 0 2 5 12:00 0 0 0 0 5 5 15:00 0 0 0 0 5 5 18:00 0 0 0 0 5 5 21:00 0 0 0 0 5 5 6:00 0 0 0 0 5 5 6:00 0 0 0 1 4 5 7 12:00 0 0 1 4 5 8 12:00 0 0 1 4 5 18:00 3 0 0 2 5 18:00 3 0 0 2 5 18:00 3 0 0 2 5 18:00 0 0 0 4 0 5	发 子		18:00	0	0	0	5	5
本季 日間 3:00 0 1 2 2 5 9:00 0 3 0 2 5 12:00 0 0 0 5 5 18:00 0 0 0 5 5 18:00 0 0 0 5 5 21:00 0 0 0 5 5 21:00 0 0 0 1 4 5 3:00 0 0 0 1 4 5 6:00 0 0 1 4 5 4 12:00 0 0 1 4 5 5 18:00 3 0 0 2 5 5 18:00 3 0 0 2 5 6:00 0 0 1 1 5 6:00 0 0 4 0 5 6:00 0 2 3 0 5 6:00 0 2 3 0 5 6:00 0 2 3 0 5 6:00 0 2 3 0 <td< td=""><td></td><td></td><td>21:00</td><td>0</td><td>1</td><td>0</td><td>4</td><td>5</td></td<>			21:00	0	1	0	4	5
本季 昼間 9:00 0 3 0 2 5 12:00 0 0 0 5 5 15:00 0 0 0 5 5 18:00 0 0 0 5 5 21:00 0 0 0 5 5 21:00 0 0 0 1 4 5 3:00 0 0 0 1 4 5 6:00 0 0 1 4 5 5 12:00 0 0 1 4 5 15:00 0 0 0 1 4 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 60 0 0 0 0 2 5 7 0 0 0 0 0 5 5 8 0 0 0 0 0 0		夜間	0:00	2	2	0	1	5
本季 昼間 12:00 0 0 0 5 5 15:00 0 0 0 5 5 18:00 0 0 0 5 5 21:00 0 0 0 5 5 21:00 0 0 0 1 4 5 3:00 0 0 0 1 4 5 6:00 0 0 1 4 5 5 0 0 0 1 4 5 6:00 0 0 0 1 4 5 5 0 0 0 1 4 5 6:00 0 0 0 1 4 5 7 0 0 0 0 0 2 5 8 18:00 3 0 0 2 5 0 5 8 6:00 0 0 0 4 0 1 5 9:00 <td></td> <td></td> <td>3:00</td> <td>0</td> <td>1</td> <td>2</td> <td>2</td> <td>5</td>			3:00	0	1	2	2	5
			9:00	0	3	0	2	5
本季 18:00 0 0 0 5 5 21:00 0 0 0 5 5 0:00 0 0 0 1 4 5 3:00 0 0 0 1 4 5 6:00 0 0 1 4 5 12:00 0 0 1 4 5 15:00 0 0 1 4 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 21:00 0 1 2 2 5 6:00 0 0 4 0 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 12:00 1 1 0 3 5 7 18:00 3 0 0 2 5 8 18:00 3 0 0 2 5 8 18:00 3 0 0 2 5 </td <td></td> <td>昼間</td> <td>12:00</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> <td>5</td>		昼間	12:00	0	0	0	5	5
本種 21:00 0 0 0 5 5 0:00 0 0 0 1 4 5 3:00 0 0 0 1 4 5 6:00 0 0 1 4 5 5 12:00 0 0 1 4 5 15:00 0 0 0 1 4 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 21:00 0 1 2 2 5 6:00 0 0 0 4 0 5 6:00 0 0 0 4 0 5 6:00 0 0 4 0 1 5 4 0 1 1 0 3 5 5 0 0 2 3 0 5 6:00 0 2 3 0 5			15:00	0	0	0	5	5
夜間 0:00 0 0 0 5 5 3:00 0 0 0 1 4 5 3:00 0 0 0 1 4 5 6:00 0 0 1 4 5 9:00 0 1 3 1 5 12:00 0 0 1 4 5 15:00 0 0 0 5 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 6:00 0 0 4 0 5 6:00 0 0 4 0 5 6:00 0 2 3 0 5 6:00 0 4 0 1 5 4 1 0 3 0 5 6:00 0 2 3 0 5 7 15:00 0 2 0 3	私禾		18:00	0	0	0	5	5
本季 日間 3:00 0 0 0 5 5 6:00 0 0 1 4 5 9:00 0 1 3 1 5 12:00 0 0 1 4 5 15:00 0 0 0 5 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 21:00 0 1 2 2 5 6:00 0 0 4 0 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 7 15:00 0 2 0 3 5 7 18:00 3 0 0 2 5 7 18:00 3 0 0 2 5 8 18:00 3 0 0 2 5 9:00 1 1 1 1 2 5 7 18:00 3 0 0	伙学		21:00	0	0	0	5	5
春季 6:00 0 1 4 5 9:00 0 1 3 1 5 12:00 0 0 1 4 5 15:00 0 0 0 5 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 21:00 0 1 2 2 5 6:00 0 0 4 0 5 6:00 0 2 3 0 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 70:00 1 1 0 2 5 70:00 1 1 1 1 2 5		夜間	0:00	0	0	1	4	5
季季 昼間 9:00 0 1 3 1 5 12:00 0 0 1 4 5 15:00 0 0 0 5 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 3:00 0 0 4 0 5 6:00 0 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 21:00 3 0 0 2 5			3:00	0	0	0	5	5
本季 昼間 12:00 0 0 1 4 5 15:00 0 0 0 5 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 21:00 1 0 4 0 5 3:00 0 0 0 4 1 5 6:00 0 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 70:00 1 1 1 2 5			6:00	0	0	1	4	5
春季 15:00 0 0 0 5 5 18:00 3 0 0 2 5 21:00 0 1 2 2 5 0:00 1 0 4 0 5 3:00 0 0 0 5 0 5 6:00 0 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 6:00 0 1 1 1 2 5			9:00	0	1	3	1	5
春季 18:00 3 0 0 2 5 21:00 0 1 2 2 5 0:00 1 0 4 0 5 3:00 0 0 5 0 5 6:00 0 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 7 18:00 3 0 0 2 5 0:00 1 1 1 2 5		昼間	12:00	0	0	1	4	5
春季 21:00 0 1 2 2 5 0:00 1 0 4 0 5 3:00 0 0 5 0 5 6:00 0 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 7 18:00 3 0 0 2 5 0:00 1 1 1 2 5			15:00	0	0	0	5	5
春季 21:00 0 1 2 2 5 0:00 1 0 4 0 5 3:00 0 0 5 0 5 6:00 0 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 0:00 1 1 1 2 5	夕禾		18:00	3	0	0	2	5
春季 A B<	令子		21:00	0	1	2	2	5
春季 6:00 0 4 1 5 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5		夜間	0:00	1	0	4	0	5
春季 6:00 0 2 3 0 5 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5			3:00	0	0	5	0	5
春季 9:00 0 4 0 1 5 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5			6:00	0	0	4	1	5
春季 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5			6:00	0	2	3	0	5
春季 12:00 1 1 0 3 5 15:00 0 2 0 3 5 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5		日間	9:00	0	4	0	1	5
春季 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5		生间	12:00	1	1	0	3	5
夜間 18:00 3 0 0 2 5 21:00 3 0 0 2 5 0:00 1 1 1 2 5	去禾		15:00	0	2	0	3	5
夜間 0:00 1 1 2 5	本学		18:00	3	0	0	2	5
0:00 1 1 2 5		岩田	21:00	3	0	0	2	5
3 · 00 0 5 0 5		1叉间	0:00	1	1	1	2	5
			3:00	0	0	5	0	5

注1:表内の数値は出現回数を示します。

注2: 高度50mごとの気温観測データをもとに逆転層の状況を調べました。

注3:観測時刻の昼間・夜間の区分は、観測日の太陽の日の出・日の入りの時刻で区分しました。

春季調査では昼間 (6時, 9時, 12時, 15時)、夜間 (18時, 21時, 0時, 3時)

夏季調査では昼間 (6時, 9時, 12時, 15時, 18時)、夜間 (21時, 0時, 3時)

秋季調査、冬季調査では昼間 (9時, 12時, 15時)、夜間 (18時, 21時, 0時, 3時, 6時) としました。

注4: 逆転層区分の指定高度は100mとして、逆転層が指定高度より低い場合を下層逆転、指定高度より高い場合を上層 逆転、指定高度をまたぐ場合を全層逆転、区分高度の上と下にあるものを二段逆転とし、下層逆転、上層逆転、 全層・二段逆転、逆転なしの4区分で集計しました。

b) 風向·風速

7) 上層風向

上層風向の調査結果(風向の鉛直分布)及び高度別風配図を表 7.1-12及び図7.1-5に示します。

通年の結果をみると、高度 $10\sim150$ mでは北方向の風、高度 $200\sim1,500$ mでは南西の風が多く観測されました。最多風向の出現率は $11.9\sim25.0$ %でした。

表 7.1-12 上層風向調査結果(風向の鉛直分布)

	通		春		リ砂里がフ	季	プ <u>エロア 1</u> 秋		久	季
高度		最多風向		最多風向		最多風向		最多風向		最多風向
(m)	最多風向	出現率	最多風向	出現率	最多風向	出現率	最多風向	出現率	最多風向	出現率
(/	(16方位)	(%)	(16方位)	(%)	(16方位)	(%)	(16方位)	(%)	(16方位)	(%)
10	北北東	23.8	北北東	20.0	南	20.0	北北東	45.0	北北東	17. 5
50	北	18. 1	北,南南西	15.0	南南西	32. 5	北北東	40.0	北	25.0
100	北北東	13.8	北	15. 0	南南西	27. 5	北北東	32. 5	北西, 北北西	17. 5
150	北	13.8	北	17.5	南西	30.0	北北東	35. 0	北西	15.0
200	南西	16.9	南,南南西	15.0	南西	35.0	北東	35.0	南西	17.5
250	南西	18. 1	南西	20.0	南西	35.0	北東	32. 5	南南西	20.0
300	南西	18. 1	南南西, 南西	17. 5	南西	35. 0	北東	35. 0	南南西	17. 5
350	南西	24. 4	南西	30.0	南西	45.0	北東	32.5	南西	22.5
400	南西	21.9	南西	22.5	南西	32. 5	北東	32.5	南西	32. 5
450	南西	25.0	南,南西	22.5	南西	50.0	北東	35.0	南西	27.5
500	南西	21.3	南南西	22.5	南西	42.5	北東	35.0	南西	22.5
550	南西	16.9	南西	22.5	南西	30.0	北東	32. 5	西南西	20.0
600	南西	16. 9	南西	22. 5	南西	30. 0	東北東	30.0	南南西, 南西, 西南西	15. 0
650	南西	16.3	南西	25.0	西南西	30.0	東北東	37. 5	南西	17. 5
700	西南西	14.4	南	22.5	西南西	27.5	東北東	37. 5	北西	20.0
750	南西	15.6	南南西	20.0	南西	30.0	東北東	47.5	北西	20.0
800	南西	13. 1	南南西	25.0	南西	27.5	東北東	47.5	北西	22.5
850	南西	14. 4	南西	22.5	南西	20.0	東北東	47.5	西南西	17. 5
900	南南西	13.8	南南西	22.5	西北西	25.0	東北東	40.0	北西	20.0
950	南南西	13.8	南,南南西	20.0	西北西	25.0	東北東	37. 5	西,北西	20.0
1,000	南西,西	12. 5	南	22. 5	南南西, 西	22. 5	東北東	42. 5	西	22. 5
1,050	南南西, 南西, 西北西	11. 9	南,南南西	20.0	南南西, 西北西	22. 5	東北東	40.0	西	22. 5
1, 100	南西	12. 5	南	22. 5	南西, 西南西, 北西	17. 5	東北東	40. 0	西, 西北西	22. 5
1, 150	南西	12. 5	南, 南南西, 北北西	20.0	南西, 西南西	20.0	東北東	32. 5	西	22. 5
1, 200	南西,西	13. 1	南南西	20.0	南西	25.0	東北東	32.5	西	27. 5
1, 250	南西	13.8	南	27.5	南西	25.0	東北東	32. 5	西	22. 5
1,300	南西	16.3	南	25.0	南西	30.0	東北東	27. 5	南西	22. 5
1, 350	南西	18. 1	南	25.0	南西	32. 5	東北東	25.0	南西	25. 0
1,400	南西	18.8	南	27.5	南西	32. 5	東北東,東	20.0	南西	25.0
1,450	南西	18. 1	南	27.5	南西	30.0	東	22.5	南西	25.0
1,500	南西	16. 3	南	27. 5	南西, 西南西	27. 5	東	22. 5	南西, 西北西	20.0

注1:各高度とも、各季に観測した各季計データの最多風向です。

注2:測定高さ10mのデータは地上気象測定データを引用しました。

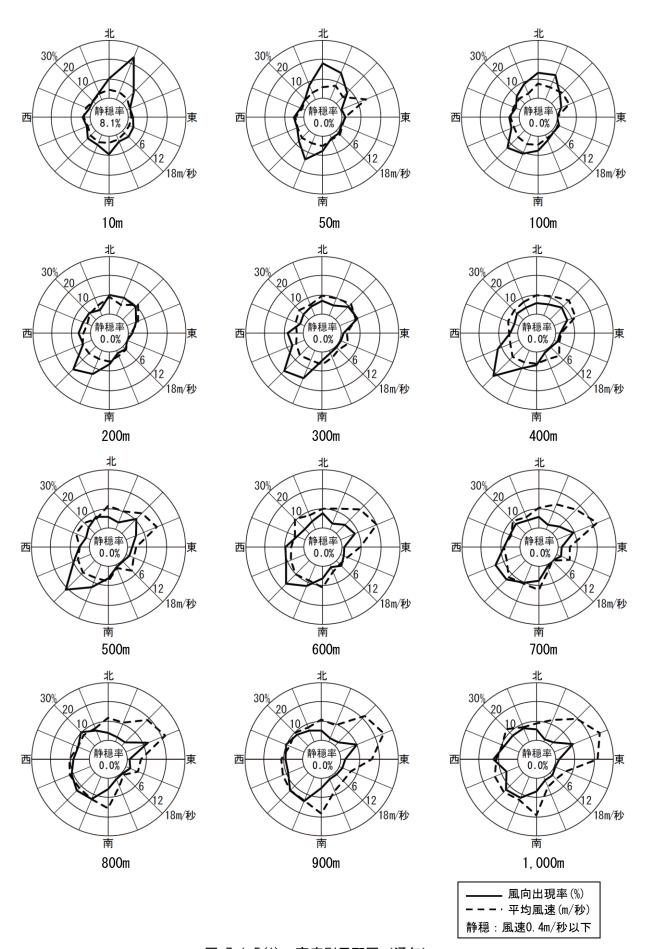
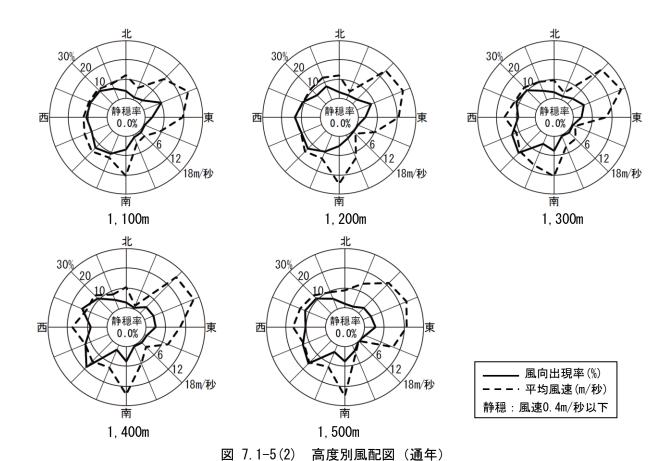



図 7.1-5(1) 高度別風配図 (通年)

(c) 一般環境大気質

a) 二酸化硫黄

二酸化硫黄の調査結果を表 7.1-13に示します。

事業計画地の4季を通じた平均値(以下「4季平均値」という。)は0.001ppm、1時間値の最高値は0.012ppmでした。その他の地点の4季平均値は0.001ppm、1時間値の最高値は0.008 \sim 0.017ppmでした。

全地点で環境基準値(日平均値0.04ppm、1時間値0.1ppm)を下回っていました。

表 7.1-13 二酸化硫黄調查結果

	我 7. I TO 一									
	地点	季節	有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値			
			I	時間	ppm	ppm	ppm			
		夏季	7	168	0.001	0.008	0.003			
		秋季	7	168	0.001	0.002	0.001			
KT1	東雲三丁目集会所	冬季	7	168	0.000	0.002	0.001			
		春季	7	168	0.001	0.007	0.002			
		年間	28	672	0.001	0.008	0.003			
		夏季	7	168	0.000	0.003	0.001			
		秋季	7	168	0.000	0.002	0.001			
KT2	事業計画地	冬季	7	168	0.001	0.006	0.001			
		春季	7	168	0.002	0.012	0.003			
		年間	28	672	0.001	0.012	0.003			
	柞木公園	夏季	7	168	0.002	0.010	0.003			
		秋季	7	168	0.000	0.003	0.000			
KT3		冬季	7	168	0.001	0.009	0.002			
		春季	7	168	0.002	0.017	0.003			
		年間	28	672	0.001	0.017	0.003			
		夏季	7	168	0.002	0.009	0.002			
	方中叶色光明用的	秋季	7	168	0.000	0.004	0.001			
KT4	府中町向洋駅周辺 区画整理事務所	冬季	7	168	0.001	0.005	0.001			
	四世年于初川	春季	7	168	0.002	0.010	0.002			
		年間	28	672	0.001	0.010	0.002			
		夏季	7	168	0.002	0.009	0.004			
		秋季	7	168	0.001	0.002	0.001			
KT5	本浦公園	冬季	7	168	0.001	0.005	0.001			
		春季	7	168	0.001	0.009	0.002			
	年間		28	672	0.001	0.009	0.004			
	環境基準		_			0.1以下	0.04以下			
	·									

環境基準:1時間値の1日平均値が0.04ppm以下であり、かつ、1時間値が0.1ppm以下であること。

「昭和48年 環境庁告示第25号」

b) 窒素酸化物

二酸化窒素の調査結果を表 7.1-14に、一酸化窒素の調査結果を表 7.1-15に、窒素酸化物の調査結果を表 7.1-16に示します。

二酸化窒素について、事業計画地の4季平均値は0.012ppm、1時間値の最高値は0.048ppmでした。その他の地点の4季平均値は0.011 \sim 0.015ppm、1時間値の最高値は0.043 \sim 0.051ppmでした。

全地点で環境基準値(日平均値0.04~0.06ppmのゾーン内又はそれ以下)を下回っていました。

表 7.1-14 二酸化窒素調査結果

	衣 7.1-14 二酸化至系酮且和未									
	地点	季節	有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値			
			目	時間	ppm	ppm	ppm			
		夏季	7	168	0.014	0.033	0.015			
		秋季	7	168	0.004	0.016	0.006			
KT1	東雲三丁目集会所	冬季	7	168	0.015	0.049	0.024			
		春季	7	168	0.017	0.036	0.022			
		年間	28	672	0.013	0.049	0.024			
		夏季	7	168	0.010	0.035	0.012			
		秋季	7	168	0.005	0.016	0.007			
KT2	事業計画地	冬季	7	168	0.016	0.048	0.026			
		春季	7	168	0.017	0.041	0.020			
		年間	28	672	0.012	0.048	0.026			
	柞木公園	夏季	7	168	0.011	0.031	0.014			
		秋季	7	168	0.007	0.020	0.011			
KT3		冬季	7	168	0.020	0.051	0.030			
		春季	7	168	0.021	0.049	0.025			
		年間	28	672	0.015	0.051	0.030			
		夏季	7	168	0.010	0.028	0.012			
	方	秋季	7	168	0.004	0.016	0.006			
KT4	府中町向洋駅周辺 区画整理事務所	冬季	7	168	0.014	0.044	0.025			
	四百五年事初川	春季	7	168	0.015	0.035	0.016			
		年間	28	672	0.011	0.044	0.025			
		夏季	7	168	0.009	0.029	0.011			
		秋季	7	168	0.004	0.015	0.005			
KT5	本浦公園	冬季	7	168	0.015	0.043	0.023			
		春季	7	168	0.014	0.040	0.018			
		年間	28	672	0.011	0.043	0.023			
	環境基準			_	_		0.06以下			

環境基準:1時間値の1日平均値が0.04ppmから0.06ppmのゾーン内又はそれ以下であること。

「昭和53年 環境庁告示第38号」

表 7.1-15 一酸化窒素調査結果

	农 7.1 10									
	地点	季節	有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値			
			日	時間	ppm	ppm	ppm			
		夏季	7	168	0.002	0.030	0.004			
		秋季	7	168	0.001	0.004	0.002			
KT1	東雲三丁目集会所	冬季	7	168	0.005	0.066	0.010			
		春季	7	168	0.003	0.030	0.004			
		年間	28	672	0.003	0.066	0.010			
		夏季	7	168	0.003	0.024	0.005			
		秋季	7	168	0.001	0.008	0.002			
KT2	事業計画地	冬季	7	168	0.006	0.059	0.010			
		春季	7	168	0.003	0.037	0.004			
		年間	28	672	0.003	0.059	0.010			
	柞木公園	夏季	7	168	0.005	0.034	0.006			
		秋季	7	168	0.002	0.008	0.002			
KT3		冬季	7	168	0.010	0.062	0.018			
		春季	7	168	0.005	0.053	0.008			
		年間	28	672	0.005	0.062	0.018			
		夏季	7	168	0.004	0.014	0.005			
	方由叶台光明用为	秋季	7	168	0.001	0.004	0.001			
KT4	府中町向洋駅周辺 区画整理事務所	冬季	7	168	0.004	0.032	0.007			
	四世年于初川	春季	7	168	0.002	0.016	0.003			
		年間	28	672	0.003	0.032	0.007			
		夏季	7	168	0.003	0.022	0.003			
		秋季	7	168	0.001	0.004	0.001			
KT5	本浦公園	冬季	7	168	0.007	0.069	0.016			
		春季	7	168	0.002	0.018	0.004			
		年間	28	672	0.003	0.069	0.016			

表 7.1-16 窒素酸化物調査結果

地点		有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値							
		日	時間	ppm	ppm	ppm							
		7	168	0.016	0.048	0.019							
	秋季	7	168	0.005	0.020	0.008							
東雲三丁目集会所	冬季	7	168	0.021	0.091	0.033							
	春季	7	168	0.020	0.061	0.027							
	年間	28	672	0.016	0.091	0.033							
	夏季	7	168	0.013	0.059	0.015							
	秋季	7	168	0.006	0.022	0.009							
事業計画地	冬季	7	168	0.022	0.086	0.035							
	春季	7	168	0.019	0.068	0.023							
	年間	28	672	0.015	0.086	0.035							
柞木公園	夏季	7	168	0.016	0.063	0.020							
	秋季	7	168	0.009	0.024	0.013							
	冬季	7	168	0.030	0.094	0.046							
	春季	7	168	0.026	0. 101	0.032							
	年間	28	672	0.020	0. 101	0.046							
	夏季	7	168	0.014	0.039	0.017							
方:	秋季	7	168	0.004	0.020	0.007							
	冬季	7	168	0.018	0.054	0.031							
四四正在事物//	春季	7	168	0.017	0.050	0.019							
	年間	28	672	0.013	0.054	0.031							
	夏季	7	168	0.012	0.044	0.013							
	秋季	7	168	0.005	0.019	0.006							
本浦公園	冬季	7	168	0.022	0. 101	0.039							
	春季	7	168	0.017	0.058	0.022							
	年間	28	672	0.014	0. 101	0.039							
	東雲三丁目集会所 事業計画地	夏季 秋季 東雲三丁目集会所 東京季 中夏秋冬季 中夏秋冬季 中夏秋冬季 中夏秋冬季 中夏秋冬季 中夏秋冬季 中夏秋冬季 中夏秋冬季	東雲三丁目集会所 夏季 7 秋季 7 冬季 7 春季 7 年間 28 夏季 7 秋季 7 年間 28 夏季 7 年間 28 夏季 7 年間 28 夏季 7 秋季 7 冬季 7 年間 28 夏季 7 年間 28 夏季 7 年間 28 夏季 7 本浦公園 7 春季 7 </td <td> 理点 日数 日数 日報 日報 日報 日報 日報 日報</td> <td>地点 季即 自数 平均値 夏季 7 168 0.016 秋季 7 168 0.005 冬季 7 168 0.021 春季 7 168 0.020 年間 28 672 0.016 夏季 7 168 0.003 春季 7 168 0.006 冬季 7 168 0.019 年間 28 672 0.015 夏季 7 168 0.019 本間 28 672 0.016 秋季 7 168 0.030 春季 7 168 0.026 年間 28 672 0.020 夏季 7 168 0.014 秋季 7 168 0.014 秋季 7 168 0.017 季季 7 168 0.018 春季 7 168 0.017 年間 28 672 0.013 夏季 7 168 0.012 秋季 7 168 0.005 本浦公園 0.012 0.012 秋季 7 168 0.005</td> <td> 世界 日数 中間 ppm ppm </td>	理点 日数 日数 日報 日報 日報 日報 日報 日報	地点 季即 自数 平均値 夏季 7 168 0.016 秋季 7 168 0.005 冬季 7 168 0.021 春季 7 168 0.020 年間 28 672 0.016 夏季 7 168 0.003 春季 7 168 0.006 冬季 7 168 0.019 年間 28 672 0.015 夏季 7 168 0.019 本間 28 672 0.016 秋季 7 168 0.030 春季 7 168 0.026 年間 28 672 0.020 夏季 7 168 0.014 秋季 7 168 0.014 秋季 7 168 0.017 季季 7 168 0.018 春季 7 168 0.017 年間 28 672 0.013 夏季 7 168 0.012 秋季 7 168 0.005 本浦公園 0.012 0.012 秋季 7 168 0.005	世界 日数 中間 ppm ppm							

c) 浮遊粒子状物質

浮遊粒子状物質の調査結果を表 7.1-17に示します。

事業計画地の4季平均値は0.022mg/m³、1時間値の最高値は0.087mg/m³でした。その他の地点の4季平均値は0.021~0.023mg/m³、1時間値の最高値は0.080~0.090mg/m³でした。

全地点で環境基準値(日平均値0.10mg/m³、1時間値0.20mg/m³)を下回っていました。

表 7.1-17 浮遊粒子状物質調査結果

	农 7.1 7.									
	地点		有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値			
			目	時間	${\rm mg/m^3}$	${\rm mg/m^3}$	${\rm mg/m^3}$			
		夏季	7	168	0.031	0.071	0.053			
KT1		秋季	7	168	0.011	0.027	0.014			
	東雲三丁目集会所	冬季	7	168	0.019	0.050	0.034			
		春季	7	168	0.026	0.083	0.060			
		年間	28	672	0.022	0.083	0.060			
		夏季	7	168	0.031	0.087	0.051			
		秋季	7	168	0.010	0.032	0.013			
KT2	事業計画地	冬季	7	168	0.019	0.054	0.032			
		春季	7	168	0.027	0.083	0.061			
		年間	28	672	0.022	0.087	0.061			
	柞木公園	夏季	7	168	0.029	0.067	0.050			
		秋季	7	168	0.012	0.032	0.013			
KT3		冬季	7	168	0.021	0.046	0.036			
		春季	7	168	0.029	0.090	0.062			
		年間	28	672	0.023	0.090	0.062			
		夏季	7	168	0.031	0.073	0.053			
	 府中町向洋駅周辺	秋季	7	168	0.011	0.030	0.013			
KT4		冬季	7	168	0.017	0.041	0.029			
	四世年于初川	春季	7	168	0.026	0.080	0.059			
		年間	28	672	0.021	0.080	0.059			
		夏季	7	168	0.033	0.077	0.055			
		秋季	7	168	0.010	0.027	0.013			
KT5	本浦公園	冬季	7	168	0.019	0.042	0.032			
		春季	7	168	0.027	0.086	0.061			
		年間	28	672	0.022	0.086	0.061			
	環境基準		=	=	=	0.20以下	0.10以下			

環境基準:1時間値の1日平均値が0.10mg/m³以下であり、かつ、1時間値が0.20mg/m³以下であること。

「昭和48年 環境庁告示第25号」

d) 塩化水素

塩化水素の調査結果を表 7.1-18に示します。

事業計画地を含む全ての地点の4季平均値は0.001ppm未満でした。

全地点で「大気汚染防止法に基づく窒素酸化物の排出基準の改定等について」(昭和52年6月16日環大規第136号)に示されている「目標環境濃度0.02ppm」を下回っていました。

表 7.1-18 塩化水素調査結果

	12	(/. 1	· · · · · · · · · · · · · · · · · · ·	术则且心不		
	地点	季節	有効測定 日数	期間平均値	期間最高値	期間最小値
			日	ppm	ppm	ppm
		夏季	7	<0.001	<0.001	<0.001
		秋季	7	<0.001	<0.001	<0.001
KT1	東雲三丁目集会所	冬季	7	<0.001	<0.001	<0.001
		春季	7	<0.001	<0.001	<0.001
		年間	28	<0.001	<0.001	<0.001
		夏季	7	<0.001	<0.001	<0.001
		秋季	7	<0.001	<0.001	<0.001
KT2	事業計画地	冬季	7	<0.001	<0.001	<0.001
		春季	7	<0.001	<0.001	<0.001
		年間	28	<0.001	<0.001	<0.001
	柞木公園	夏季	7	<0.001	<0.001	<0.001
		秋季	7	<0.001	<0.001	<0.001
KT3		冬季	7	<0.001	<0.001	<0.001
		春季	7	<0.001	<0.001	<0.001
		年間	28	<0.001	<0.001	<0.001
		夏季	7	<0.001	<0.001	<0.001
		秋季	7	<0.001	<0.001	<0.001
KT4	府中町向洋駅周辺 区画整理事務所	冬季	7	<0.001	<0.001	<0.001
	四百五年事物//	春季	7	<0.001	<0.001	<0.001
		年間	28	<0.001	<0.001	<0.001
		夏季	7	<0.001	<0.001	<0.001
		秋季	7	<0.001	<0.001	<0.001
KT5	本浦公園	冬季	7	<0.001	<0.001	<0.001
		春季	7	<0.001	<0.001	<0.001
		年間	28	<0.001	<0.001	<0.001
	目標環境濃度		_	0.02以下		

目標環境濃度:0.02ppm以下

「環境庁大気保全局長通達」(昭和52年 環大規第136号)

e) 水銀及びその化合物

水銀及びその化合物(以下、「水銀」という。)の調査結果を表 7.1-19に示します。 事業計画地の4季平均値は0.0016 μ g/m³、その他の地点の4季平均値は0.0015 μ g/m³でした。

全地点で、環境中の有害大気汚染物質による健康リスクの低減を図るための指針となる数値(年平均値0.04 μ g/m³)(出典:「今後の有害大気汚染物質対策のあり方について(第七次答申)」(平成15年7月31日、中央環境審議会))を下回っていました。

表 7.1-19 水銀調査結果

			女 7.1 10			
	地点	季節	有効測定 日数	期間平均値	期間最高値	期間最小値
			日	$\mu \; { m g/m^3}$	$\mu \; { m g/m^3}$	$\mu \text{ g/m}^3$
		夏季	7	0.0015	0.0017	0.0011
		秋季	7	0.0012	0.0014	0.0010
KT1	東雲三丁目集会所	冬季	7	0.0016	0.0021	0.0014
		春季	7	0.0017	0.0022	0.0014
		年間	28	0.0015	0.0022	0.0010
		夏季	7	0.0012	0.0015	0.0008
		秋季	7	0.0015	0.0020	0.0012
KT2	事業計画地	冬季	7	0.0017	0.0021	0.0010
		春季	7	0.0019	0.0026	0.0015
		年間	28	0.0016	0.0026	0.0008
	柞木公園	夏季	7	0.0012	0.0015	0.0010
		秋季	7	0.0014	0.0017	0.0012
KT3		冬季	7	0.0018	0.0024	0.0016
		春季	7	0.0017	0.0022	0.0013
		年間	28	0.0015	0.0024	0.0010
		夏季	7	0.0012	0.0014	0.0008
	左 中医4.米斯国内	秋季	7	0.0014	0.0028	0.0011
KT4	府中町向洋駅周辺 区画整理事務所	冬季	7	0.0016	0.0022	0.0014
	四世年事物別	春季	7	0.0017	0.0023	0.0013
		年間	28	0.0015	0.0028	0.0008
		夏季	7	0.0014	0.0017	0.0012
		秋季	7	0.0013	0.0015	0.0012
KT5	本浦公園	冬季	7	0.0017	0.0022	0.0015
		春季	7	0.0016	0.0020	0.0013
		年間	28	0.0015	0.0022	0.0012
	指針値			0.04以下	_	_

指針値: 年平均値が0.04 μ g/m³以下であること。

「今後の有害大気汚染物質対策のあり方について (第七次答申)」 (平成15年 中央環境審議会)

f) ダイオキシン類

ダイオキシン類の調査結果を表 7.1-20に示します。

事業計画地の4季平均値は0.033pg-TEQ/m³、その他の地点の4季平均値は0.023~0.041pg-TEQ/m³でした。

全地点で環境基準値(年平均値0.6pg-TEQ/m³)を下回っていました。

表 7.1-20 ダイオキシン類調査結果

	20 7.1 20	<i>/</i> 1 ·	カーノフス	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	地点	季節	有効測定 日数	実測濃度	毒性等量
			目	${ m pg/m^3}$	pg-TEQ/m ³
		夏季	7	11	0.031
		秋季	7	3.8	0.022
KT1	東雲三丁目集会所	冬季	7	4.0	0.038
		春季	7	5. 0	0.032
		年間	28	6.0	0.031
		夏季	7	8.0	0.035
	事業計画地	秋季	7	3. 1	0.020
KT2		冬季	7	3. 7	0.039
		春季	7	4. 7	0.038
		年間	28	4. 9	0.033
	柞木公園	夏季	7	8. 1	0.051
		秋季	7	4. 6	0.022
KT3		冬季	7	4. 2	0.047
		春季	7	4. 6	0.042
		年間	28	5. 4	0.041
		夏季	7	5. 3	0.020
	 府中町向洋駅周辺	秋季	7	2. 7	0.019
KT4	区画整理事務所	冬季	7	2. 9	0.031
		春季	7	3. 1	0.023
		年間	28	3. 5	0.023
		夏季	7	6. 6	0.033
		秋季	7	3. 3	0.021
KT5	本浦公園	冬季	7	3. 6	0.036
		春季	7	3. 9	0.030
		年間	28	4. 4	0.030
	環境基準		_	_	0.6以下

環境基準:年平均値が0.6pg-TEQ/m³以下であること。 「平成11年 環境省告示第68号」

g) 降下ばいじん量(粉じん)

降下ばいじん量(粉じん)(以下、「降下ばいじん量」という。)の調査結果を表7.1-21に示します。

事業計画地の4季平均値は1.83t/km²/月であり、降下ばいじん量のバックグラウンド濃度が比較的高い地域の値(10t/km²/月)(出典:「国土技術政策総合研究所資料第714号 土木研究所資料第4254号 道路環境影響評価の技術手法(平成24年度版)」(平成25年3月 国土交通省国土技術政策総合研究所・独立行政法人土木研究所)(以下「道路環境影響評価の技術手法」という。)を下回っていました。

表 7.1-21 降下ばいじん量調査結果

				降下ばいじん量	
	地 点			溶解性	不溶解性
				物質量	物質量
			t/km²/月	t/km²/月	t/km²/月
		夏季	1. 37	0. 59	0.78
		秋季	1.89	0. 58	1. 31
KT2	事業計画地	冬季	1.58	0. 91	0.67
		春季	2. 47	1. 26	1. 21
		年間	1.83	0.84	0.99
	参考値				_

降下ばいじん量に係る参考値:10t/km²/月

「平成24年度版 道路環境影響評価の技術手法」

(d) 道路沿道大気質

a) 窒素酸化物

二酸化窒素の調査結果を表 7.1-22に、一酸化窒素の調査結果を表 7.1-23に、窒素酸化物の調査結果を表 7.1-24に示します。

二酸化窒素について、4季平均値は $0.013\sim0.018$ ppm、1時間値の最高値は $0.044\sim0.054$ ppmでした。

全地点で環境基準値(日平均値0.04~0.06ppmのゾーン内又はそれ以下)を下回っていました。

表 7.1-22 二酸化窒素調査結果

	地点季節		有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値
			日	時間	ppm	ppm	ppm
		夏季	7	168	0.012	0.036	0.013
	市道南3区129号線	秋季	7	168	0.005	0.019	0.008
JT1	沿道(南環境事務	冬季	7	168	0.017	0.054	0.028
	所)	春季	7	168	0.019	0.043	0.023
		年間	28	672	0.013	0.054	0.028
		夏季	7	168	0.014	0.033	0.016
	一般国道2号沿道 (渕崎会館)	秋季	7	168	0.014	0.049	0.018
JT2		冬季	7	168	0.021	0.047	0.031
		春季	7	168	0.024	0.051	0.030
		年間	28	672	0.018	0.051	0.031
		夏季	7	168	0.011	0.036	0.016
	一般県道広島海田	秋季	7	168	0.008	0.027	0.012
JT3	線沿道(南消防署 青崎出張所新庁舎	冬季	7	168	0.018	0.044	0.026
	建設予定地)	春季	7	168	0.020	0.043	0.023
	~L #	年間	28	672	0.014	0.044	0.026
	環境基準		_	_	_	_	0.06以下

環境基準:1時間値の1日平均値が0.04ppmから0.06ppmのゾーン内又はそれ以下であること。

「昭和53年 環境庁告示第38号」

表 7.1-23 一酸化窒素調査結果

	地点		有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値				
			日	時間	ppm	ppm	ppm				
		夏季	7	168	0.007	0.032	0.009				
	市道南3区129号線	秋季	7	168	0.002	0.016	0.005				
JT1	沿道(南環境事務	冬季	7	168	0.010	0. 109	0.015				
	所)	春季	7	168	0.006	0.051	0.009				
		年間	28	672	0.006	0. 109	0.015				
		夏季	7	168	0.014	0.082	0.018				
		秋季	7	168	0.010	0.060	0.018				
JT2	一般国道2号沿道 (渕崎会館)	冬季	7	168	0.018	0. 110	0.024				
	(仍們云阳)	春季	7	168	0.013	0.093	0.021				
		年間	28	672	0.014	0. 110	0.024				
		夏季	7	168	0.007	0.034	0.012				
	一般県道広島海田	秋季	7	168	0.007	0.025	0.009				
JT3	線沿道(南消防署 青崎出張所新庁舎	冬季	7	168	0.016	0.069	0.024				
	建設予定地)	春季	7	168	0.010	0.045	0.014				
	, , , , , , , , , , , , , , , , , , , ,	年間	28	672	0.010	0.069	0.024				

表 7.1-24 窒素酸化物調査結果

	地点	季節	有効測定 日数	測定時間	期間 平均値	1時間値 の最高値	日平均値 の最高値				
			目	時間	ppm	ppm	ppm				
		夏季	7	168	0.019	0.068	0.022				
	市道南3区129号線	秋季	7	168	0.007	0.035	0.013				
JT1	沿道(南環境事務	冬季	7	168	0.027	0. 161	0.042				
	所)	春季	7	168	0.025	0.082	0.032				
		年間	28	672	0.020	0. 161	0.042				
		夏季	7	168	0.028	0.098	0.034				
	40. E3. 24. 0 1 1/1 1/4	秋季	7	168	0.024	0.088	0.037				
JT2	一般国道2号沿道 (渕崎会館)	冬季	7	168	0. 039	0. 154	0.055				
	(仍們云阳)	春季	7	168	0.038	0. 126	0.047				
		年間	28	672	0.032	0. 154	0.055				
		夏季	7	168	0.019	0.063	0.026				
	一般県道広島海田	秋季	7	168	0.015	0.044	0.021				
JT3	線沿道(南消防署 青崎出張所新庁舎	冬季	7	168	0.034	0.094	0.049				
	建設予定地)	春季	7	168	0.030	0.084	0.037				
	1 - 2 - 7 / - 4/	年間	28	672	0.024	0.094	0.049				

b) 浮遊粒子状物質

浮遊粒子状物質の調査結果を表 7.1-25に示します。

4季平均値は0.022~0.023mg/m³、年間の1時間値の最高値は0.081~0.089mg/m³でした。

全地点で環境基準値(日平均値0.10mg/m³、1時間値0.20mg/m³)を下回っていました。

表 7.1-25 浮遊粒子状物質調査結果

	地点	季節	有効測定 日数 日	測定時間時間	期間 平均値 mg/m³	1時間値 の最高値 mg/m³	日平均値 の最高値 mg/m³
		夏季	7	168	0.032	0.087	0.055
	市道南3区129号線 沿道(南環境事務 所)	秋季	7	168	0.009	0.021	0.013
JT1		冬季	7	168	0.021	0.070	0.036
311		春季	7	168	0. 025	0. 080	0. 057
		年間	28	672	0.022	0. 087	0.057
	一般国道2号沿道 (渕崎会館)	夏季	7	168	0.033	0. 081	0. 055
		秋季	7	168	0.009	0. 021	0. 013
JT2		冬季	7	168	0.019	0.048	0.034
		春季	7	168	0.029	0.079	0.059
		年間	28	672	0.022	0.081	0.059
			7	168	0.033	0.089	0.054
	一般県道広島海田 線沿道(南消防署 青崎出張所新庁舎 建設予定地)	秋季	7	168	0.009	0.022	0.013
JT3		冬季	7	168	0.021	0.052	0.035
		春季	7	168	0.028	0.082	0.062
	/LEX 1 /C-12/	年間	28	672	0.023	0.089	0.062
	環境基準	_				0.20以下	0.10以下

環境基準:1時間値の1日平均値が0.10mg/m³以下であり、かつ、1時間値が0.20mg/m³以下であること。

「昭和48年 環境庁告示第25号」

7.1.2 予測·評価

工事の実施

(1) 建設機械の稼働に伴う粉じん等

1) 予測項目

予測項目は、建設機械の稼働に伴い発生する粉じん等(降下ばいじん量)としました。

2) 予測地域・地点

予測地域は、建設機械の稼働による影響が想定される範囲として、事業計画地の敷地境界から150mとしました。予測地点は、敷地境界付近として降下ばいじん量の現地調査地点と同様の1地点(地点KT2)としました。予測高さは、1.5mとしました。

3) 予測時期

予測時期は、工事の実施による影響が最大となる時期としました。

4) 予測手法

建設機械の稼働に伴う降下ばいじん量を対象として、「道路環境影響評価の技術手法」 に示された手法に基づき予測を行いました。

(a) 予測手順

予測手順を図 7.1-6に示します。

降下ばいじん量について、建設機械の種類及び台数、施工範囲及び1年間の地上気象 調査結果から設定した気象条件をもとに、解析式を用いて予測を行いました。

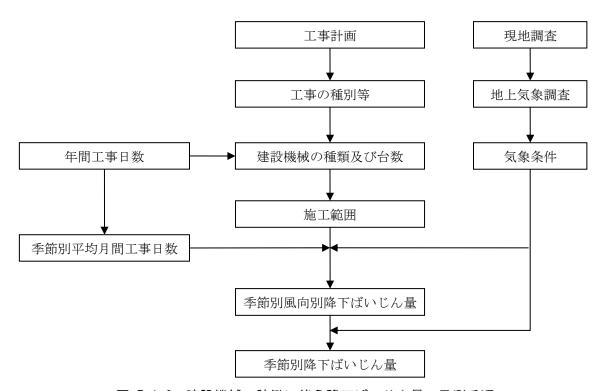


図 7.1-6 建設機械の稼働に伴う降下ばいじん量の予測手順

(b) 予測式

予測式は以下のとおりです。

a)基本式

$$C_d(x) = a \cdot (u/u_0)^{-b} \cdot (x/x_0)^{-c}$$

[記 号]

 $C_d(x)$: 1ユニットから発生し拡散する粉じん等のうち、発生源からの距離x (m) の地

上1.5mに堆積する1日当たりの降下ばいじん量(t/km²/日/ユニット)

a : 基準降下ばいじん量 (t/km²/日/ユニット)

(基準風速時の基準距離における1ユニットからの1日当たりの降下ばいじん量)

u : 平均風速 (m/秒) u₀ : 基準風速 (=1m/秒)

b : 風速の影響を表す係数 (=1) x : 風向に沿った風下距離 (m)

x₀ : 基準距離 (=1m)

c:降下ばいじんの拡散を表す係数

b) 風向別降下ばいじん量の計算式

風向別降下ばいじん量は、前述の基本式をもとに、次式により求めました。

$$\begin{split} R_{ds} &= N_{u} \cdot N_{d} \int_{-\pi/16}^{\pi/16} \int_{x_{1}}^{x_{2}} C_{d}(x) x dx d\theta / A \\ &= N_{u} \cdot N_{d} \int_{-\pi/16}^{\pi/16} \int_{x_{1}}^{x_{2}} a \cdot (u_{s}/u_{0})^{-b} \cdot (x/x_{0})^{-c} x dx d\theta / A \end{split}$$

[記 号]

R_{ds} : 風向別降下ばいじん量 (t/km²/月)

s : 風向(16方位)の添字

Nu : ユニット数

N_d : 季節別の平均月間工事日数 (日/月)

us :季節別風向別平均風速 (m/秒)

(u_s<1m/秒の場合は、u_s=1m/秒とする。)

x₁ : 予測地点から季節別の施工範囲の手前側の敷地境界線までの距離(m) (x₁<1mの場合は、x₁=1mとする。)

x₂ : 予測地点から季節別の施工範囲の奥側の敷地境界線までの距離(m) (x₂<1mの場合は、x₂=1mとする。)

A : 季節別の施工範囲の面積 (m²)

c) 季節別降下ばいじん量の計算式

季節別降下ばいじん量は、次式により求めました。

$$C_{_{d}} = \sum_{s=1}^{n} R_{_{ds}} \cdot f_{_{ws}}$$

[記 号]

C_d : 季節別降下ばいじん量 (t/km²/月)

n : 方位(=16)

fws : 季節別風向出現頻度 s : 風向(16方位)の添字

5) 予測条件

(a) 建設機械のユニット数及び係数等

作業単位を考慮した建設機械の組合せ(ユニット)は、工事区分ごとに想定される工種の作業内容を勘案し、「道路環境影響評価の技術手法」に記載のユニットに基づき、表 7.1-26に示すとおり本事業における工事の影響を適切に反映できるよう設定しました。また、月間の平均工事日数は22日としました。

表 7.1-26 建設機械のユニット数及び係数等

予測地点	種別	ユニット	ユニット数	係	数 ^注	平均工事日数	
1. 似证业	1里刀1	4-91	ユーテト数	a	С	(日/月)	
KT2	掘削工	土砂掘削	2	2, 220	2. 0	22	

注:係数は前ページの「a)基本式」に示す記号参照。

係数 a : 基準降下ばいじん量 (t/km²/日/ユニット)、係数 c : 降下ばいじんの拡散を表す係数

環境保全措置として散水を計画しているため、それを考慮し係数aを設定しています。「道路環境影響評価の技術手法」に、 土砂掘削工の散水時の係数aは示されていないことから、コンクリート構造物取壊し工の非散水 (a:13,000) と散水 (a:1,700) の比率を基に設定しました。

(b) 降下ばいじん量の発生源の面積

降下ばいじん量の発生源の面積は、表 7.1-27に示すとおり設定しました。

表 7.1-27 発生源の面積

予測地点	発生源の面積 (m²)
KT2	約4,690

注:工場棟の範囲を発生源の面積として設定しています。

(c) 気象条件

気象条件は、渕崎公園における1年間の地上気象調査結果に基づき、建設機械稼働時間 (8~17時) における季節別の風向、風速を用いて表 7.1-28に示すとおり設定しました。

表 7.1-28 建設機械稼働時間帯における季節別風向出現割合及び季節別風向別平均風速

単位 出現頻度:%、平均風速:m/秒

													- 1-1-A	ロラロクスル	∠ . /∪	, 1		111/ 1/
季節,項目	風向 目	北北東	北東	東北東	東	東南東	南東	南南東	南	南南西	南西	西南西	西	西北西	北西	北北西	北	静穏
去禾	出現頻度	11.2	4.0	1.7	1.0	1.2	1.8	4.0	9.6	18.0	11. 2	6. 1	6.6	2.6	2.4	3.2	10.5	4.8
春季	平均風速	2.6	2. 1	2. 1	2.0	1. 1	1.2	1.9	2.5	2.8	2.4	1.9	1.9	1.7	1.5	2.0	3. 0	0.3
夏季	出現頻度	4. 7	2.7	1.5	1.4	0.8	1.6	4. 7	18.5	20.5	23. 2	6.5	4.2	2.2	0.4	0.8	2.9	3.4
友子	平均風速	1.9	1.6	1.5	1.2	1.2	1.2	1.5	3.0	2.6	2.7	1.8	1.6	1.2	1.3	1.2	1.7	0.3
秋季	出現頻度	18.0	7.0	3. 5	2.5	1.2	2.6	3. 3	6.0	10.2	5.3	4.3	1.9	1.2	2.6	3. 1	19.0	3.7
外子	平均風速	2.7	2.3	2.2	2. 1	1.7	2.2	1.9	2.4	2.6	2.3	1.4	1.4	1.3	1.5	1.9	3.0	0.2
夕禾	出現頻度	13. 4	4.9	2.3	2.2	1.7	2. 1	3.0	5. 2	5. 9	4.8	3.9	7.0	8.2	8.8	6.9	15.6	4.1
冬季	平均風速	2. 3	1.6	1.5	1.2	1.0	0.8	1. 9	2.6	2.6	2.3	1.7	1.9	2.2	1.8	1.7	2.6	0.3

注:風速0.4m/秒以下を静穏としました。

6) 予測結果

予測結果を表 7.1-29に示します。

季節別降下ばいじん量の最大値は、秋季で1.8/km²/月であり、降下ばいじん量に係る参 考値を下回ります。

表 7.1-29 建設機械の稼働に伴う降下ばいじん量の予測結果

予測地点	降下に	ばいじん量	載(t/km²	参考値 ^注			
1′侧地点	春季	夏季	秋季	冬季	少 与他 [—]		
KT2	1.0	0. 7	1.8	1.6	工事寄与の降下ばいじ ん量が10t/km²/月以下		

注:「道路環境影響評価の技術手法」に示される降下ばいじん量に係る参考値。環境を保全する上での降下ばいじん量は、20t/km²/月(スパイクタイヤ粉じんにおける生活環境の保全が必要な地域の指標)が目安と考えられます。降下ばいじん量が比較的高い地域の値が10t/km²/月であることから、評価においては、これらの差である10t/km²/月が参考値とされています。

7) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・工事に際し散水を行うことにより、粉じん等の発生・飛散を抑制します。
- ・事業計画地は仮囲いを行い、粉じん等の飛散を抑制します。

8) 評価

建設機械の稼働に伴う降下ばいじん量の影響について、季節別降下ばいじん量の最大値は秋季で1.8t/km²/月であり、降下ばいじん量に係る参考値への整合が図られているものと評価します。

また、工事に際し散水を行うことにより、粉じん等の発生・飛散を抑制する等の環境保 全措置を実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減 されているものと評価します。

(2) 資材及び機械等の運搬に用いる車両の運行に伴う粉じん等

1) 予測項目

予測項目は、資材及び機械等の運搬に用いる車両(以下、「工事用車両」という。)の運 行に伴い発生する粉じん等(降下ばいじん量)としました。

2) 予測地域·地点

予測地域は、工事用車両の運行による影響が想定される範囲として、主要運行ルートの 道路端から150mとしました。予測地点は、道路沿道大気質の現地調査地点を基本とし、図 7.1-8に示す3地点(地点JT1、地点JT2及び地点JT3)としました。また、予測高さは、地 上1.5mとしました。

3) 予測時期

予測時期は、工事用車両のうち、工事区域内の裸地への出入りがあり発生源となると想定される、大型車の運行台数が最大となる1年間を対象とし、工事開始後45~56か月目としました。大型車の走行台数と、影響が最大となる1年間は、図 7.1-7に示すとおりです。

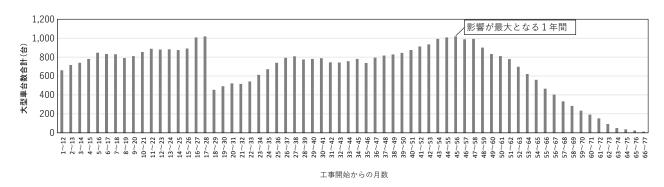


図 7.1-7 工事用車両の運行に伴う降下ばいじん量の予測時期

4) 予測手法

工事用車両の運行に伴う降下ばいじん量を対象として、「道路環境影響評価の技術手法」 に示された手法に基づき予測を行いました。

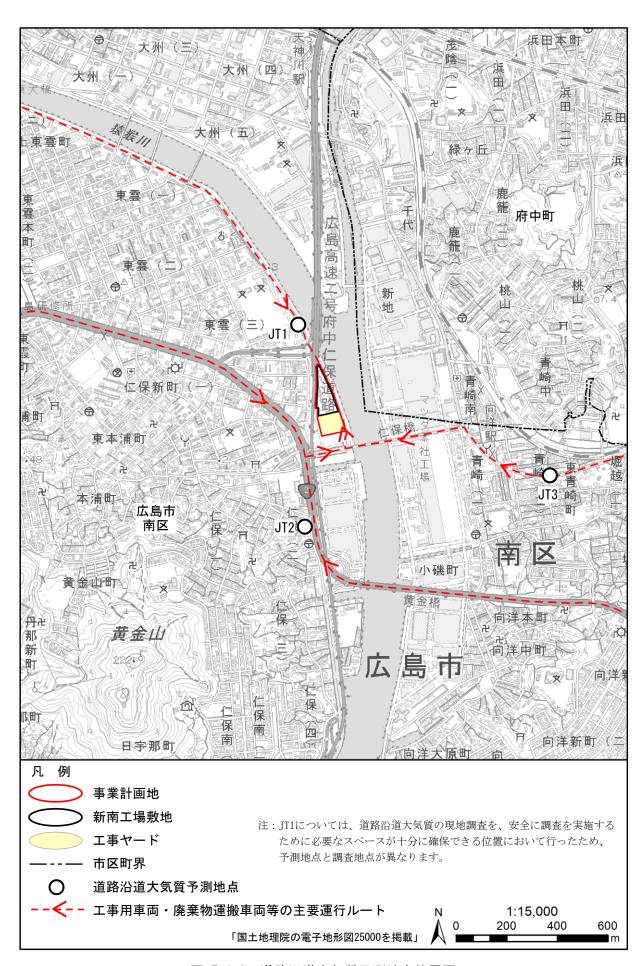


図 7.1-8 道路沿道大気質予測地点位置図

(a) 予測手順

予測手順を図 7.1-9に示します。

降下ばいじん量について、道路構造等の道路条件、交通量及び1年間の地上気象調査 結果から設定した気象条件をもとに、解析式を用いて予測を行いました。

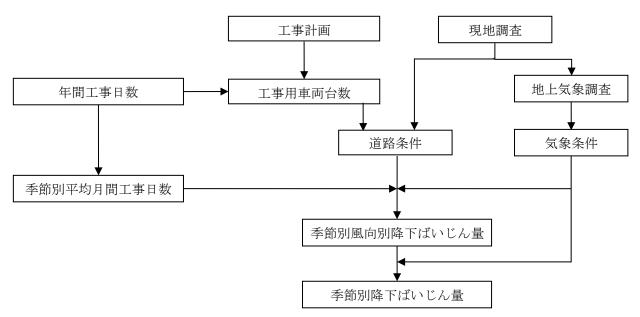


図 7.1-9 工事用車両の運行に伴う降下ばいじん量の予測手順

(b) 予測式

予測式は以下のとおりです。

a) 基本式

$$C_d(x) = a \cdot (u/u_0)^{-b} \cdot (x/x_0)^{-c}$$

[記 号]

 $C_d(x)$: 工事用車両1台の運行により発生源1㎡から発生し拡散する粉じん等のうち発生源からの距離x (m) の地上1.5mに堆積する降下ばいじん量 $(t/km^2/m^2/台)$

: 基準降下ばいじん量 (t/km²/m²/台) (基準風速時の基準距離における工事用車両1台当たりの発生源1㎡から の降下ばいじん量)

u : 平均風速 (m/秒) u₀ : 基準風速 (u₀=1m/秒)

b : 風速の影響を表す係数 (b=1) x : 風向に沿った風下距離 (m)

x₀ : 基準距離 (x₀=1m)

c:降下ばいじん量の拡散を表す係数

b) 風向別降下ばいじん量の計算式

風向別降下ばいじん量は、前述の基本式をもとに、次式により求めました。

$$\begin{split} R_{ds} &= N_{HC} \cdot N_{d} \int\limits_{-\pi/16}^{\pi/16} \int\limits_{x_{1}}^{x_{2}} C_{d}(x) x dx d\theta \\ &= N_{HC} \cdot N_{d} \int\limits_{-\pi/16}^{\pi/16} \int\limits_{x_{1}}^{x_{2}} a \cdot (u_{s}/u_{0})^{-b} \cdot (x/x_{0})^{-c} x dx d\theta \end{split}$$

[記 号]

R_{ds} : 風向別降下ばいじん量 (t/km²/月)

s : 風向(16方位)の添字

NHC: 工事用車両の平均日交通量(台/日)Nd: 季節別の平均月間工事日数(日/月)us: 季節別風向別平均風速(m/秒)

(u_s<1m/秒の場合は、u_s=1m/秒とする。)

x1 : 予測地点から工事用車両通行帯の手前側の端部までの距離 (m)

(x₁<1mの場合は、x₁=1mとする。)

x2 : 予測地点から工事用車両通行帯の奥側の端部までの距離 (m)

W: 工事用車両通行帯の幅員(m) (基本的に3.5mとする。)

c) 季節別降下ばいじん量の計算式

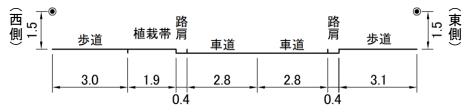
季節別降下ばいじん量は、次式により求めました。

$$\boldsymbol{C}_{d} = \sum_{s=1}^{n} \boldsymbol{R}_{ds} \cdot \boldsymbol{f}_{ws}$$

[記 号]

C_d: 季節別降下ばいじん量(t/km²/月)

n : 方位 (=16)


fws : 季節別風向出現頻度 s : 風向(16方位)の添字

5) 予測条件

(a) 予測対象断面構成

予測地点における道路横断面構成は、図 7.1-10に示すとおりです。

地点JT1:市道南3区129号線沿道

地点JT2:国道2号沿道

地点JT3:一般県道広島海田線沿道

図 7.1-10 工事用車両の運行に伴う降下ばいじん量の予測地点の断面構成

(b) 工事用車両台数及び係数等

基準降下ばいじん量(a)及び降下ばいじんの拡散を表す係数(c)等は、「道路環境影響評価の技術手法」に基づき、表 7.1-30に示すとおり設定しました。

なお、工事用車両ルートについては、現時点で詳細が決まっていないことから、工事 用車両の予測地点ごとの配分は行わず、すべての車両が各予測地点を走行する条件とし ました。ただし、地点JT2の側道については、工事用車両は走行しない計画のため0台と しました。また、月間の平均工事日数は22日としました。

表 7.1-30 工事用車両台数及び係数等

				<u> </u>
	平均日交通量	係	数	平均工事日数
区分	[大型車] (台/日)	a	С	(日/月)
JT1	84			
JT2(側道)	0	0.0140	2. 0	22
JT2 (本線)	84	0.0140	2.0	22
JT3	84			

注:係数は前ページの「a)基本式」に示す記号参照。

係数 a : 基準降下ばいじん量 (t/km²/日/ユニット)、係数 c : 降下ばいじんの拡散を表す係数「道路環境影響評価の技術手法」に示される「現場内運搬(舗装路)」の係数を設定しました。

(c) 気象条件

気象条件は、渕崎公園における1年間の地上気象調査結果に基づき、工事用車両運行時間 (6~19時) における季節別の風向、風速を用いて表 7.1-31に示すとおり設定しました。

表 7.1-31 工事用車両運行時間帯における季節別風向出現割合及び季節別風向別平均風速

単位 出現頻度:%、平均風速:m/秒

													-17-	コラビタス	又,/0	, 1 m	迅还.	m/ 1/
季節,項目	風向	北北東	北東	東北東	東	東南東	南東	南南東	南	南南西	南西	西南西	西	西北西	北西	北北西	北	静穏
春季	出現頻度	12.9	4. 1	1.9	1. 1	1.4	1.6	4. 1	10.5	14. 4	10.6	6.3	6.7	2. 9	2.7	2. 7	11. 1	5. 1
香 学	平均風速	2.6	1.8	2.0	2. 1	1.1	1.3	1.7	2.2	2.6	2.4	1.8	1.8	1.6	1.5	1.8	2.9	0.3
百壬	出現頻度	5.0	3. 1	1.6	1.6	1.0	1.6	5. 4	17.9	18.6	20.5	8.4	4.3	2. 2	0.7	1.0	3.4	5.0
夏季	平均風速	1.8	1.6	1.4	1.2	1.2	1.2	1.5	2.8	2.5	2.5	1.7	1.6	1. 1	1.5	1. 3	1.8	0.3
秋季	出現頻度	20.4	8.0	3.6	2.9	2.4	3.0	3. 2	5.2	9.3	4.3	4.0	1.3	1. 1	2.7	3. 4	21.4	3.8
外子	平均風速	2.6	2. 2	2. 1	2.1	1.7	2.0	2. 1	2.4	2.5	1.9	1.3	1.3	1. 2	1.4	1. 7	3.0	0.3
冬季	出現頻度	14.2	5. 4	2.5	2.6	2.4	2.4	2. 2	3.5	5. 3	3.9	4.3	6.9	7. 2	8.8	7. 1	16.8	4.7
令学	平均風速	2. 1	1.5	1.4	1.2	1.0	0.9	1.8	2.4	2.5	2.3	1.8	1.9	2. 1	1.8	1. 7	2.5	0.3

注:風速0.4m/秒以下を静穏としました。

6) 予測結果

予測結果を表 7.1-32に示します。

季節別降下ばいじん量における各予測地点の最大値は、地点JT1が東側の夏季で2.03t/km²/月、地点JT2が東側の夏季で0.65t/km²/月、地点JT3が北側の夏季で2.17t/km²/月であり、降下ばいじん量に係る参考値を下回ります。

表 7.1-32 工事用車両による降下ばいじん量の予測結果

	7		+ IC1 1 - C1	WITT 1 1011	· •••	
玄洲 肿 岸		降下	ざいじん 』	参考値 ^注		
」/侧耳	予測地点		夏季	秋季	冬季	少 ろ但 ^位
TT 1	西側	0. 55	0.42	0.88	0. 97	
JT1	東側	1.60	2.03	0. 98	1. 24	工事寄与の降下
TΤO	西側	0.31	0. 28	0.45	0. 47	工事お子の降下 ばいじん量が
ЈТ2	東側	0. 54	0.65	0.36	0.49	10t/km ² /月以下
JT3	南側	1. 20	0.80	1. 56	2. 05	100/8111/月以下
113	北側	1. 51	2. 17	1. 08	1.01	

注:「道路環境影響評価の技術手法」に示される降下ばいじん量に係る参考値。環境を保全する上での降下ばいじん量は、20t/km²/月(スパイクタイヤ粉じんにおける生活環境の保全が必要な地域の指標)が目安と考えられる。降下ばいじん量が比較的高い地域の値が10t/km²/月であることから、評価においては、これらの差である10t/km²/月が参考値とされています。

7) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・工事の工程を調整し、工事用車両台数の平準化を図ります。
- ・工事用車両が工事区域外へ出る場合、タイヤ洗い場でタイヤ等に付着した泥を除去す ることにより、粉じんの発生を抑制します。
- ・制限速度の遵守を運転手に指導します。

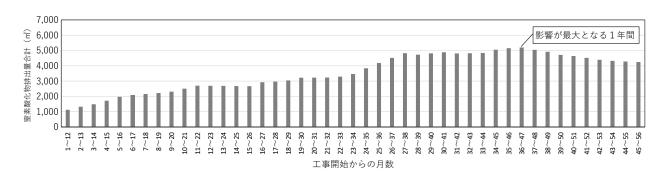
8) 評価

工事用車両の運行に伴う降下ばいじん量の影響について、季節別降下ばいじん量における各予測地点の最大値は、地点JT1が東側の夏季で2.03t/km²/月、地点JT2が東側の夏季で0.65t/km²/月、地点JT3が北側の夏季で2.17t/km²/月であり、降下ばいじん量に係る参考値への整合が図られているものと評価します。

また、工事の工程を調整し、工事用車両台数の平準化を図る等の環境保全措置を実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減されているものと評価します。

(3) 建設機械の稼働に伴う窒素酸化物・浮遊粒子状物質

1) 予測項目


予測項目は、建設機械の稼働に伴う排ガス(窒素酸化物(二酸化窒素)及び浮遊粒子状物質)の影響としました。

2) 予測地域·地点

予測地域は、建設機械の稼働による影響が想定される範囲として、事業計画地の敷地境界から150mとしました。予測地点は、一般環境大気質の現地調査地点と同様の1地点(地点KT2)及び最大着地濃度地点としました。また、予測高さは地上1.5mとしました。

3) 予測時期

予測時期は、建設機械の月間台数に基づき窒素酸化物及び浮遊粒子状物質の排出量(1年間の合計)を算出し、それが最大となる1年間を対象とし、窒素酸化物では工事開始後36~47か月目、浮遊粒子状物質では27~38か月目としました。建設機械の稼働による窒素酸化物及び浮遊粒子状物質の排出量と、影響が最大となる1年間は、図 7.1-11に示すとおりです。



図 7.1-11 建設機械の稼働に伴う窒素酸化物・浮遊粒子状物質の予測時期

4) 予測手法

二酸化窒素及び浮遊粒子状物質の年平均値を対象として、「窒素酸化物総量規制マニュアル (新版)」(平成12年 公害研究対策センター)に示すプルーム式・パフ式を基本とした大気拡散式により予測を行いました。

(a) 予測手順

予測手順を図 7.1-12に示します。

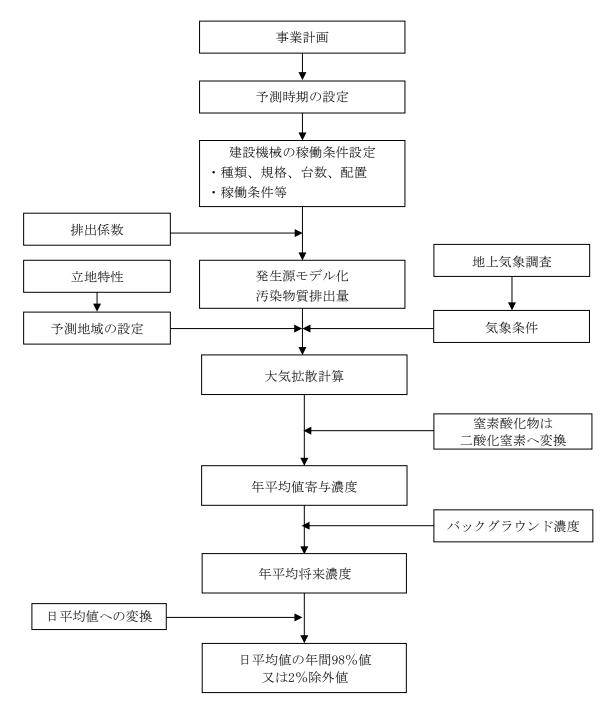


図 7.1-12 建設機械の稼働に伴う二酸化窒素・浮遊粒子状物質の予測手順

(b) 予測式

予測式は以下のとおりです。

有風時 (風速1.0m/秒以上): プルームの長期平均式

$$C(R,z) = \sqrt{\frac{1}{2\pi}} \cdot \frac{Q_{p}}{(\pi / 8) R \sigma_{z} u} \cdot \left[exp \left\{ -\frac{(z - H_{e})^{2}}{2\sigma_{z}^{2}} \right\} + exp \left\{ -\frac{(z + H_{e})^{2}}{2\sigma_{z}^{2}} \right\} \right] \cdot 10^{6}$$

弱風時 (風速0.5~0.9m/秒): 弱風パフ式 b)

$$C(R,z) = \frac{1}{\sqrt{2\pi}} \cdot \frac{Q_p}{(\pi/8) \gamma} \cdot \left[\frac{1}{\eta_-^2} \cdot \exp\left(-\frac{u^2(z - H_e)^2}{2 \gamma^2 \eta_-^2}\right) + \frac{1}{\eta_+^2} \cdot \exp\left(-\frac{u^2(z + H_e)^2}{2 \gamma^2 \eta_+^2}\right) \right] \cdot 10^6$$

$$\eta_-^2 = R^2 + \frac{\alpha^2}{\gamma^2} (z - H_e)^2$$

$$\eta_+^2 = R^2 + \frac{\alpha^2}{\gamma^2} (z + H_e)^2$$

$$R^2 = x^2 + y^2$$

$$R^2 = x^2 + y^2$$

無風時(風速0.4m/秒以下): 簡易パフ式

$$C(R,z) = \frac{Q_p}{(2\pi)^{3/2}\gamma} \cdot \left\{ \frac{1}{R^2 + (\alpha^2/\gamma^2) \cdot (H_p - z)^2} + \frac{1}{R^2 + (\alpha^2/\gamma^2) \cdot (H_p + z)^2} \right\} \cdot 10^6$$

[記 号]

C(R, z): 地点(R, z)における汚染物質の濃度(ppm、mg/m³)

:煙源からの水平距離 (m)

:煙源から風向に沿った風下距離 (m)

: 風向に直角な水平距離 (m) :計算地点の高さ(1.5m)

: 汚染物質の排出量 (m³N/秒、kg/秒)

:煙突頂部の風速 (m/秒)

:有効煙突高 (m)

:有風時の鉛直方向の拡散パラメータ (m) :無風時の水平方向の拡散パラメータ (m/秒) :無風時の鉛直方向の拡散パラメータ (m/秒)

(c) 拡散パラメータ

有風時における鉛直方向の拡散パラメータは、表 7.1-33に示すパスキル・ギフォード図の近似関数を、弱風時、無風時の水平方向及び鉛直方向の拡散パラメータは、表 7.1-34に示すパスキル安定度に対応した拡散パラメータを使用しました。

表 7.1-33 有風時の鉛直方向の拡散パラメータ(パスキル・ギフォード図の近似関数) $\sigma_z(\mathbf{x}) = \gamma_z \cdot \mathbf{x}^{\alpha_z}$

安定度	αz	γz	風下距離 x (m)
	1. 122	0.0800	0 ~ 300
A	1. 514	0.00855	$300 \sim 500$
	2. 109	0.000212	500 ~
В	0.964	0. 1272	0 ~ 500
D	1.094	0.0570	500 ~
С	0. 918	0.1068	0 ~
	0.826	0. 1046	0 ~ 1,000
D	0.632	0.400	$1,000 \sim 10,000$
	0. 555	0.811	10,000 ~
	0. 788	0.0928	$0 \sim 1,000$
Е	0.565	0. 433	$1,000 \sim 10,000$
	0.415	1.732	10,000 ~
	0. 784	0.0621	$0 \sim 1,000$
F	0. 526	0.370	$1,000 \sim 10,000$
	0.323	2.41	10,000 ~
	0. 794	0. 0373	$0 \sim 1,000$
G	0.637	0. 1105	$1,000 \sim 2,000$
G	0. 431	0. 529	$2,000 \sim 10,000$
	0. 222	3.62	10,000 ~

注:A-B、B-C及びC-Dの中間安定度のパラメータは、前後の安定度の拡散パラメータを幾何平均した値を用いた。 出典:「窒素酸化物総量規制マニュアル [新版]」(平成12年12月 公害研究対策センター)

表 7.1-34 弱風時、無風時の拡散パラメータ

弱風時

大気安定度	α	γ
A	0.748	1. 569
А-В	0.659	0.862
В	0. 581	0. 474
В-С	0. 502	0.314
С	0. 435	0. 208
C-D	0.342	0. 153
D	0. 270	0.113
Е	0. 239	0.067
F	0. 239	0.048
G	0. 239	0. 029

無風時

大気安定度	α	γ
A	0. 948	1. 569
А-В	0.859	0.862
В	0. 781	0.474
В-С	0. 702	0.314
С	0. 635	0. 208
C-D	0. 542	0. 153
D	0. 470	0.113
Е	0. 439	0.067
F	0. 439	0.048
G	0. 439	0.029

出典:「窒素酸化物総量規制マニュアル [新版]」(平成12年12月 公害研究対策センター)

5) 予測条件

(a) 排出条件

建設機械の稼働に伴う二酸化窒素及び浮遊粒子状物質の排出量が最も多く、環境への影響が最大となる1年間の建設機械の種類、出力及び稼働台数は、表 7.1-35及び表 7.1-36に示すとおりです。

建設機械の稼働に伴う二酸化窒素及び浮遊粒子状物質の排出量については、「道路環境影響評価の技術手法」に示される方法により設定しました。

表 7.1-35 建設機械の種類、出力及び稼働台数(二酸化窒素)

建設機械	出力 (kW)	稼働台数 (台/年)
バックホウ (0.25m³)	41	22
バックホウ (0.7m³)	116	374
杭打設機(油圧)	257	132
クローラクレーン (80t)	169	330
クローラクレーン(150t)	184	286
クローラクレーン (350t)	235	22
ラフタークレーン (25t)	193	572
ラフタークレーン (50t)	257	110
コンクリートポンプ車 (55m³)	127	264
コンクリートポンプ車 (135m³)	265	220
コンクリートミキサー車 (4m³)	213	1320
フォークリフト (3.5t)	37	44

注:タワークレーン及び高所作業車についても予測時期に稼働しますが、電動であるため、 発生源として設定していません。

表 7.1-36 建設機械の種類、出力及び稼働台数(浮遊粒子状物質)

衣 /. I-30 建敌俄佩切性规、山刀及C	"杨朗口奴(丹迦	
建設機械	出力(kW)	稼働台数 (台/年)
バックホウ (0.1m³)	41	22
バックホウ (0.25m³)	41	396
バックホウ (0.7m³)	116	660
バックホウ (2.7m³)	298	44
杭打設機 (油圧)	257	176
クラムシェル(1m³)	173	220
クローラクレーン (80t)	169	330
クローラクレーン (150t)	184	110
ラフタークレーン (25t)	193	550
ラフタークレーン (50t)	257	154
コンクリートポンプ車 (55m³)	127	110
コンクリートポンプ車 (135m³)	265	198
コンクリートミキサー車 (4m³)	213	550

注: タワークレーンについても予測時期に稼働しますが、電動であるため、発生源として設 定していません。

(b) 排出源の位置及び高さ

排出源の位置は、工事計画から稼働範囲に応じて点煙源を面的に並べて設定しました。 排出源の高さについては、建設機械の排気管の高さは、「道路環境影響評価の技術手 法」を参考に2m、また、排ガス上昇高さは、「土木技術資料 第42巻 第1号」(平成12 年(財)土木研究センター)を参考に3mとし、合計で5mとしました。

(c) 気象条件

風向及び風速は、渕崎公園における1年間の地上気象調査結果に基づき設定しました。 風速については、地上10mで観測した風速を以下のべき乗則により、地上5mの風速に 補正して用いました。べき指数Pは、表 7.1-37に示す大気安定度ごとの値を用いました。 大気安定度は、1年間の地上気象調査結果を用いて設定しました。

べき乗則による補正式は以下のとおりです。

 $U_z = U_s (Z/Z_s)^{-p}$

「記号]

Uz :高さZにおける推計風速 (m/秒)

U_s : 地上風速 (m/秒) Z : 推計高度 (5m)

Z_s :地上風速観測高度 (10m)

P :べき指数

表 7.1-37 べき指数の値P

パスキル安定度	A	В	С	D	Е	FとG
Р	0.1	0. 15	0. 20	0. 25	0. 25	0.30

出典:「窒素酸化物総量規制マニュアル [新版]」(平成12年12月 公害研究対策センター)

(d) バックグラウンド濃度

バックグラウンド濃度は、一般環境大気質の現地調査結果から、事業計画地(地点 KT2)における4季平均値を表 7.1-38に示すとおり設定しました。

表 7.1-38 バックグラウンド濃度

予測地点	二酸化窒素(ppm)	浮遊粒子状物質(mg/m³)
KT2	0.012	0.022
最大着地濃度地点	0.012	0. 022

(e) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、以下に示す指数近似式 I を使用しました。

$$[NO_2] = [NO_X]_D \cdot \left[1 - \frac{\alpha}{1+\beta} \{exp(-Kt) + \beta\}\right]$$

[記号]

[NO₂] : 二酸化窒素の濃度 (ppm)

「NOx」。: 拡散計算から得られた窒素酸化物の濃度 (ppm)

α : 排出源近傍での一酸化窒素と窒素酸化物の比(=0.83)

β : 平衡状態を近似する定数(昼:0.3、夜:0.0)

t : 拡散時間(秒) K : 実験定数(s⁻¹)

 $K = \gamma \cdot u \cdot [0_3]_B$

y : 定数 (=0.23) u : 風速 (m/秒)

 $[0_3]_B:$ バックグラウンド・オゾン濃度 (ppm)

(令和2年6月~令和3年5月の皆実小学校測定局**の値により

表 7.1-39のとおり設定)

※オキシダント (オゾン) 濃度の常時監視を行っている最寄りの一般環境大気測定局。

表 7.1-39 バックグラウンド・オゾン濃度

単位:ppm

風速階級		昼間		夜間				
(H=5m)	不安定時	中立時	安定時	不安定時	中立時	安定時		
有風時	0. 037	0. 029	_	_	0.026	0. 029		
弱風時	0.024	0.021	_	_	0.018	0.024		
無風時	0. 018	0. 017	_	_	0.014	0. 022		

(f) 日平均値の年間98%値又は2%除外値への変換

二酸化窒素及び浮遊粒子状物質について、年平均値の予測結果を環境基準の日平均値 と比較するため、将来濃度予測結果(年平均値)を日平均値の年間98%値又は2%除外 値へ変換しました。

変換については、事業計画地からおおむね半径3km以内の一般環境大気測定局(皆実小学校測定局、海田高校測定局)の平成27~令和元年度の測定結果を用いて、年平均値と日平均値(二酸化窒素:年間98%値、浮遊粒子状物質:2%除外値)との関係から最小二乗法により求めた換算式を用いました。換算式を表 7.1-40に示します。

表 7.1-40 年平均値から日平均値(年間98%値、2%除外値)への換算式

項目	区分	換算式
二酸化窒素	一般環境	(日平均値の年間98%値)=1.0519×(年平均値)+0.0128 (相関係数0.79)
浮遊粒子状物質	一般環境	(日平均値の2%除外値) =3.7595× (年平均値) -0.0192 (相関係数0.77)

6) 予測結果

(a) 年平均值

予測結果は、表 7.1-41及び図 7.1-13に示すとおりです。

地点KT2における二酸化窒素は0.01774ppmで寄与率は32.4%、浮遊粒子状物質は0.02288mg/m³で寄与率は3.8%でした。

最大着地濃度地点における二酸化窒素は0.02180ppmで寄与率は44.9%、浮遊粒子状物質は0.02344mg/m³で寄与率は6.1%でした。

表 7.1-41(1) 建設機械の稼働に伴う二酸化窒素濃度予測結果(年平均値)

単位:ppm

予測地点	建設機械 寄与濃度 ①	バックグラウンド 濃度 ②	将来濃度 ③ = ① + ②	寄与率 (%) ① / ③×100
KT2	0.00574	0.012	0. 01774	32. 4%
最大着地濃度地点	0.00980	0.012	0.02180	44. 9%

表 7.1-41(2) 建設機械の稼働に伴う浮遊粒子状物質濃度予測結果(年平均値)

単位: mg/m^3

予測地点	建設機械 寄与濃度 ①	バックグラウンド 濃度 ②	将来濃度 ③ = ① + ②	寄与率 (%) ① / ③×100
KT2	0.00088	0. 022	0. 02288	3. 8%
最大着地濃度地点	0.00144	0.022	0. 02344	6. 1%

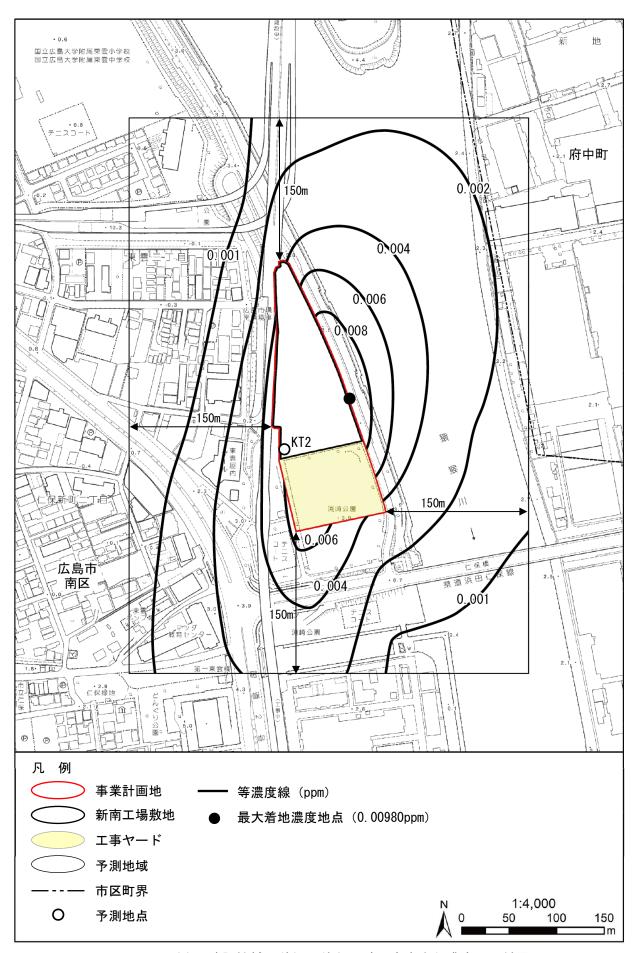


図 7.1-13(1) 建設機械の稼働に伴う二酸化窒素寄与濃度予測結果

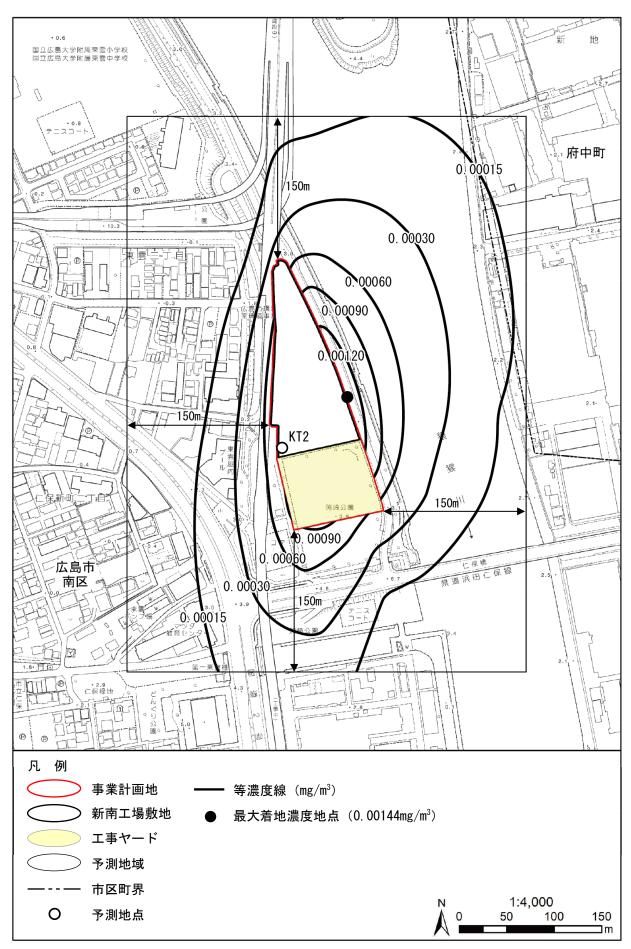


図 7.1-13(2) 建設機械の稼働に伴う浮遊粒子状物質寄与濃度予測結果

(b) 環境基準との比較

環境基準との比較のため、日平均値の年間98%又は2%除外値への換算を行った結果は、表 7.1-42に示すとおりです。

地点KT2における二酸化窒素は0.031ppm、浮遊粒子状物質は0.067mg/m³、最大着地濃度地点における二酸化窒素は0.036ppm、浮遊粒子状物質は0.069mg/m³であり、環境基準を満足するものと予測します。

表 7.1-42(1) 建設機械の稼働に伴う二酸化窒素予測結果(日平均値の年間98%値)

単位: ppm

	1 1 - 1 PP m		
	将来	濃度	
予測地点	年平均値	日平均値の 年間98%値	環境基準
KT2	0. 01774	0. 031	日平均値の年間98%値が0.04~
最大着地濃度地点	0. 02180	0. 036	0.06ppmのゾーン内又はそれ以下

表 7.1-42(2) 建設機械の稼働に伴う浮遊粒子状物質予測結果(日平均値の2%除外値)

単位:mg/m³

1 1220					
	将来	濃度			
地点	年平均値	日平均値の 2%除外値	環境基準		
KT2	0. 02288	0. 067	日平均値の2%除外値が		
最大着地濃度地点	0. 02344	0.069	0.10mg/m³以下		

7) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・建設工事に際しては、大気汚染負荷の少ない工法を採用します。
- ・排出ガス対策型建設機械を導入します。
- ・作業計画の検討により、建設機械の同時稼働台数をできるだけ少なくします。
- ・作業待ち時間等の待機時間におけるアイドリングストップを徹底します。

8) 評価

建設機械の稼働に伴う二酸化窒素・浮遊粒子状物質の影響について、二酸化窒素及び浮遊粒子状物質の日平均値の年間 98%又は 2%除外値への換算を行った結果、地点 KT2 における二酸化窒素は 0.031ppm、浮遊粒子状物質は 0.067mg/m³、最大着地濃度地点における、二酸化窒素は 0.036ppm、浮遊粒子状物質は 0.069mg/m³であり、環境基準との整合が図られているものと評価します。

また、建設工事に際しては、大気汚染負荷の少ない工法を採用する等の環境保全措置を 実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減されてい るものと評価します。

(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質

1) 予測項目

予測項目は、工事用車両の運行に伴う排ガス(窒素酸化物(二酸化窒素)及び浮遊粒子 状物質)の影響としました。

2) 予測地域・地点

予測地域は、工事用車両の運行による影響が想定される範囲として、主要運行ルートの道路端から150mとしました。予測地点は、「資材及び機械等の運搬に用いる車両の運行に伴う粉じん等」と同様に、道路沿道大気質の現地調査地点を基本とし、図7.1-8に示した3地点(地点JT1、地点JT2及び地点JT3)としました。また、予測高さは、地上1.5mとしました。

3) 予測時期

予測時期は、工事用車両の運行台数が最大となる1年間を対象とし、大気質への影響が大きい大型車の走行台数が最大となる工事開始後45~56か月目としました。大型車の走行台数と、影響が最大となる1年間は、図 7.1-14に示すとおりです。

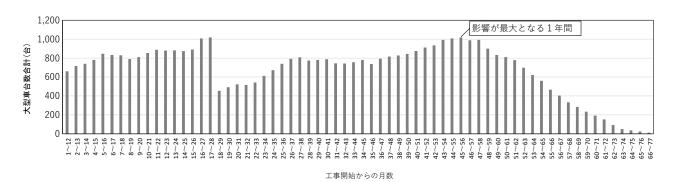


図 7.1-14 工事用車両の運行に伴う二酸化窒素・浮遊粒子状物質の予測時期

4) 予測手法

二酸化窒素及び浮遊粒子状物質の年平均値を対象として、「道路環境影響評価の技術手法」に示すプルーム式・パフ式を基本とした大気拡散式により予測を行いました。

(a) 予測手順

予測手順を図 7.1-15に示します。

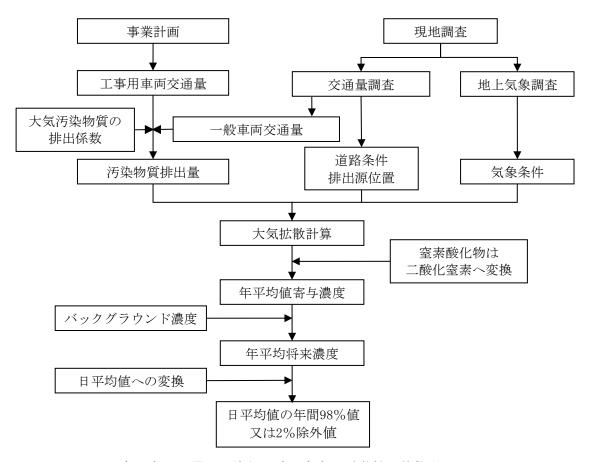


図 7.1-15 工事用車両の運行に伴う二酸化窒素・浮遊粒子状物質の予測手順

(b) 予測式

予測式は以下のとおりです。

a) 有風時 (風速1.0m/秒を超える場合): プルーム式

$$C(x,y,z) = \frac{Q}{2 \pi \cdot u \cdot \sigma_{y} \cdot \sigma_{z}} \cdot \exp\left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) \left[\exp\left\{-\frac{(z+H)^{2}}{2 \sigma_{z}^{2}}\right\} + \exp\left\{-\frac{(z-H)^{2}}{2 \sigma_{z}^{2}}\right\}\right]$$

$$\sigma_{y} = \frac{W}{2} + 0.46L^{0.81}$$

$$\sigma_{z} = \sigma_{z0} + 0.31L^{0.83}$$

「記号]

C(x, y, z) : (x, y, z) 地点における窒素酸化物濃度 (ppm)、浮遊粒子状物質濃度 (mg/m³)

Q : 点煙源の窒素酸化物の排出量 (mL/秒)、浮遊粒子状物質の排出量 (mg/秒)

u : 平均風速 (m/秒) H : 排出源の高さ (m)

σ_y, σ_z : 水平 (y)、鉛直 (z) 方向の拡散幅 (m)

(x < W/2の場合は、 $\sigma_y = W/2$ 、 $\sigma_z = \sigma_{z0}$ とする。)

σ_{Z0} : 鉛直方向の初期拡散幅(1.5m)

 L
 : 車道部端からの距離 (L=x-W/2) (m)

 x
 : 風向に沿った風下距離 (m)

W : 車道部幅員 (m)

 x
 : 風向に沿った風下距離 (m)

 y
 : x軸に直角な水平距離 (m)

 z
 : x軸に直角な鉛直距離 (m)

b) 弱風時 (風速1.0m/秒以下): パフ式

$$C(x,y,z) = \frac{Q}{(2\pi)^{3/2} \cdot \alpha^2 \cdot \gamma} \left\{ \frac{1 - \exp\left(-\frac{\ell}{t_0^2}\right)}{2\ell} + \frac{1 - \exp\left(-\frac{m}{t_0^2}\right)}{2m} \right\}$$

$$\ell = \frac{1}{2} \cdot \left\{ \frac{x^2 + y^2}{\alpha^2} + \frac{(z - H)^2}{\gamma^2} \right\}$$

$$m = \frac{1}{2} \cdot \left\{ \frac{x^2 + y^2}{\alpha^2} + \frac{(z + H)^2}{\gamma^2} \right\}$$

[記号]

t₀: 初期拡散幅に相当する時間 (t₀=W/2α) (秒)

α, γ : 拡散幅に関する係数

(α =0.3、 γ =0.18(昼間:7~19時)、 γ =0.09(夜間:19~7時))

c) 時間別平均排出量

$$\boldsymbol{Q}_{_{\mathrm{t}}} = \boldsymbol{V}_{_{\boldsymbol{w}}} \times \frac{1}{3600} \times \frac{1}{1000} \times \sum_{_{\mathrm{i}=1}}^{2} \left(\boldsymbol{N}_{_{\mathrm{i}\,\mathrm{t}}} \times \boldsymbol{E}_{_{\mathrm{i}}}\right)$$

[記号]

Qt : 時間別平均排出量 (mL/m・秒又はmg/m・秒)

 E_{i} : 車種別排出係数($g/km\cdot$ 台) N_{it} : 車種別時間別交通量(台/時) V_{w} : 換算係数(mL/g又はmg/g)

| 窒素酸化物:20℃、1気圧で523m1/g

浮遊粒子状物質:1,000mg/g

d) 重合計算式

$$\begin{aligned} \text{Ca} &= \frac{\sum_{t=1}^{24} \text{Ca}_t}{24} \\ \text{Ca}_t &= \Bigg[\sum_{s=1}^{16} \left\{ \left(\text{Rw}_s / \text{uw}_{ts} \right) \times \text{fw}_{ts} \right\} + \text{Rc}_{dn} \times \text{fc}_t \right] Q_t \end{aligned}$$

[記号]

Ca : 年平均濃度 (ppm又はmg/m³)

Cat: 時刻tにおける年平均濃度 (ppm又はmg/m³)

Rws: :プルーム式により求められた風向別基準濃度 (m-1)

fw_t。: 年平均時間別風向出現割合

uwts : 年平均時間別風向別平均風速 (m/秒)

Rcdn : パフ式により求められた昼夜別基準濃度(秒/m²)

fc_t: 年平均時間別弱風時出現割合

Q_t : 年平均時間別平均排出量(mL/m·秒、mg/m·秒)

なお、添字のsは風向(16方位)、tは時間、dnは昼夜の別、wは有風時、cは弱風時

を示します。

5) 予測条件

(a) 煙源の位置及び高さ

煙源は、図 7.1-16に示すとおり、車道部の中央に予測断面を中心に前後合わせて 400mの区間に配置し、煙源の間隔は、予測断面の前後20mの区間で2m間隔、その両側それぞれ180mの区間で10m間隔としました。また、煙源の高さは、路面+1mとしました。 予測地点の断面構成は、図 7.1-17に示すとおりです。

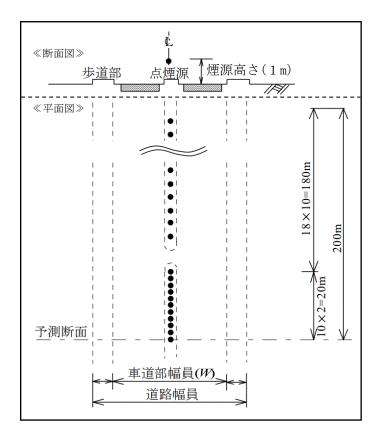
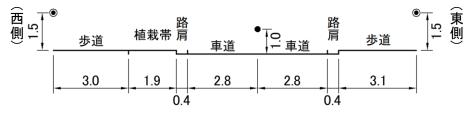
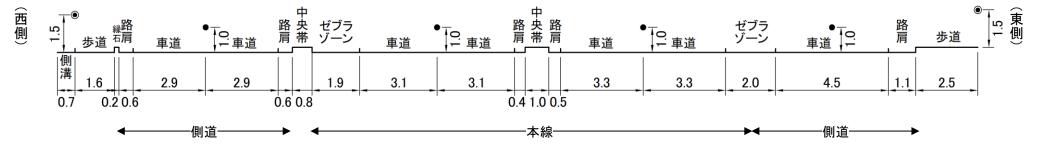




図 7.1-16 煙源の位置

地点JT2:国道2号沿道

地点JT3:一般県道広島海田線沿道

図 7.1-17 工事用車両の運行に伴う二酸化窒素及び浮遊粒子状物質の予測地点の断面構成

(b) 走行速度

走行速度は、対象道路の規制速度とし、表 7.1-43に示すとおりとしました。

 予測地点
 走行速度

 JT1
 40km/時

 JT2 (側道)
 40km/時

JT2 (本線)

JT3

表 7.1-43 走行速度

(c) 排出係数

予測地点の窒素酸化物及び浮遊粒子状物質の排出係数は、「道路環境影響評価の技術 手法」及び「国土技術政策総合研究所資料第671号 道路環境影響評価等に用いる自動 車排出係数の算定根拠(平成22年度版)」(平成24年2月、国土交通省国土技術政策総合 研究所)に基づき、走行速度や車種を考慮して表 7.1-44に示すとおり設定しました。 なお、排出係数は、予測時期(工事開始後45~56か月目(令和8(2026)年))をもとに 2025年度としました。

60km/時

40km/時

그 시나 나타	走行速度	士任	排出係数(g	/ (km·台))
予測地点	(km/時)	車種	窒素酸化物	浮遊粒子状物質
TT 1	40	大型車	0. 432	0. 006958
JT1	40	小型車	0.049	0.000548
JT2(側道)	40	大型車	0. 432	0. 006958
J12 (例延)	40	小型車	0.049	0. 000548
JT2(本線)	60	大型車	0.335	0. 005213
J12 (本称)	60	小型車	0.038	0. 000377
TTO	40	大型車	0. 432	0. 006958
JT3	40	小型車	0.049	0.000548

表 7.1-44 車種別排出係数

(d) 交通量

予測時期における工事用車両の断面交通量(工事開始後45~56か月目の平均値)を表7.1-45に示します。工事用車両ルートについては、現時点で詳細が決まっていないことから、工事用車両の予測地点ごとの配分は行わず、すべての車両が各予測地点を走行する条件としました。ただし、地点JT2の側道については、工事用車両は走行しない計画のため0台としました。

また、予測時期の一般車両交通量は、現況交通量と同様とし、工事用車両が主に走行する平日の現況交通量を用いました。各地点の現況交通量を表 7.1-46に示します。

表 7.1-45 工事用車両の断面交通量

単位:台/日

予測地点	大型車	小型車	合計
JT1	84	310	394
JT2(側道)	0	0	0
JT2(本線)	84	310	394
JT3	84	310	394

表 7.1-46 現況交通量

単位:台/日

予測地点	大型車	小型車	合計
JT1	440	8, 919	9, 359
JT2(側道)	885	11, 032	11, 917
JT2(本線)	6, 046	44, 109	50, 155
JT3	1,643	20, 366	22, 009

(e) 気象条件

風向及び風速は、渕崎公園における1年間の地上気象調査結果に基づき設定しました。 なお、風速については、以下に示すべき乗則の式により、排出源の高さにおける風速 を推定し用いました。

 $U = U_0 \cdot (H / H_0)^P$

[記 号]

U: 高さHmにおける推計風速(m/秒)

U0: 基準高さH0の風速(m/秒)H: 排出源の高さ (m) (1.0m)H0: 基準とする高さ(m) (10m)P: べき指数 (市街地:1/3)

(f) バックグラウンド濃度

バックグラウンド濃度は、一般環境大気質の現地調査結果より、予測地点の最寄りの調査地点について4季平均値を表 7.1-47に示すとおり設定しました。

表 7.1-47 バックグラウンド濃度

予測地点	最寄りの	二酸化窒素	浮遊粒子状物質
1′侧地点	調査地点	(ppm)	(mg/m^3)
JT1	KT2	0.012	0.022
JT2	KT3	0.015	0.023
JT3	KT4	0.011	0. 021

注:予測は、道路の影響を受けていない一般環境の濃度をバックグラウンド濃度とし、車両走行に よる予測濃度(工事用車両及び一般車両)を加える方法により行いました。

(g) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、「道路環境影響評価の技術手法」に 基づく次式を用いました。変換式は以下に示すとおりです。

$$[NO_2]_R = 0.0714 \ [NO_X]_R^{0.438} \ (1 - \ [NO_X]_{BG} \ / \ [NO_X]_T)^{0.801}$$

[記号]

 [NOx]R
 : 窒素酸化物の対象道路の寄与濃度 (ppm)

 [NO2]R
 : 二酸化窒素の対象道路の寄与濃度 (ppm)

 [NOx]RG
 : 窒素酸化物のバックグラウンド濃度 (ppm)

[NOx]_T: 室素酸化物のバックグラウンド濃度と対象道路の寄与濃度の

合計値 (ppm) $([NOx]_T = [NOx]_R + [NOx]_{BG})$

(h) 日平均値の年間98%値又は2%除外値への変換

二酸化窒素及び浮遊粒子状物質について、年平均値の予測結果を環境基準の日平均値と比較するため、将来濃度予測結果(年平均値)を日平均値の年間98%値又は2%除外値へ変換しました。

変換は、「道路環境影響評価の技術手法」に基づく次式を用いました。

・二酸化窒素(年間98%値)

年間98%値 = a (
$$[NO_2]_{BG}$$
 + $[NO_2]_R$) + b
$$a = 1.34 + 0.11 \cdot \exp(-[NO_2]_R / [NO_2]_{BG})$$

$$b = 0.0070 + 0.0012 \cdot \exp(-[NO_2]_R / [NO_2]_{BG})$$

・浮遊粒子状物質(2%除外値)

2%除外値 =
$$([SPM]_{BG} + [SPM]_R) + b$$

 $a = 1.71 + 0.37 \cdot exp(-[SPM]_R / [SPM]_{BG})$
 $b = 0.0063 + 0.0014 \cdot exp(-[SPM]_R / [SPM]_{BG})$

[記 号]

「NO₂]_R : 二酸化窒素の道路寄与濃度の年平均値(ppm)

[NO2] BG: 二酸化窒素のバックグラウンド濃度の年平均値 (ppm)[SPM] R: 浮遊粒子状物質の道路寄与濃度の年平均値 (mg/m³)

[SPM]_{BG} : 浮遊粒子状物質のバックグラウンド濃度の年平均値 (mg/m³)

6) 予測結果

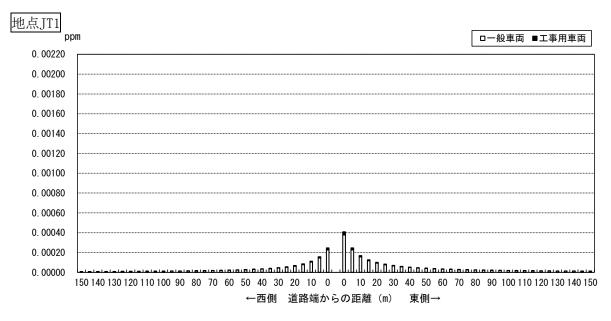
(a) 年平均值

予測結果を表 7.1-48及び図 7.1-18に示します。

二酸化窒素における各予測地点の最大値は、地点JT1が東側の0.01241ppmで寄与率は0.24%、地点JT2が東側の0.01694ppmで寄与率は0.06%、地点JT3が北側の0.01259ppmで寄与率は0.32%でした。

浮遊粒子状物質における各予測地点の最大値は、地点JT1が東側の0.02203mg/m³で寄与率は0.00%、地点JT2が東側の0.02313mg/m³で寄与率は0.00%、地点JT3が南側、北側ともに0.02108mg/m³で寄与率は0.00%でした。

表 7.1-48(1) 工事用車両の運行に伴う二酸化窒素濃度の予測結果(年平均値)


単位:ppm

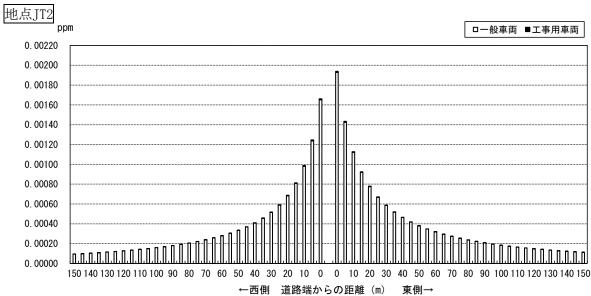

予測地点		工事用車両 寄与濃度 ①	一般車両 寄与濃度 ②	バックグラ ウンド濃度 ③	将来濃度 (①+②+③)	寄与率 (①/(①+②+③)) ×100
T/T 1	西側	0.00002	0.00023	0.012	0. 01225	0. 16%
JT1	東側	0. 00003	0. 00038	0.012	0. 01241	0. 24%
TTO	西側	0. 00001	0.00165	0.015	0.01666	0.06%
JT2	東側	0. 00001	0.00193	0.015	0.01694	0.06%
TTO	南側	0.00004	0. 00151	0.011	0. 01255	0. 32%
JT3	北側	0.00004	0. 00155	0.011	0. 01259	0. 32%

表 7.1-48(2) 工事用車両の運行に伴う浮遊粒子状物質濃度の予測結果(年平均値)

単位:mg/m³

予測地点		工事用車両 寄与濃度 ①	一般車両 寄与濃度 ②	バックグラ ウンド濃度 ③	将来濃度 (①+②+③)	寄与率 (①/(①+②+③)) ×100
TT 1	西側	0.00000	0. 00002	0.022	0. 02202	0.00%
JT1	東側	0. 00000	0. 00003	0.022	0. 02203	0.00%
TTO	西側	0.00000	0.00011	0.023	0. 02311	0.00%
JT2	東側	0.00000	0.00013	0.023	0. 02313	0.00%
TTO	南側	0.00000	0.00008	0.021	0. 02108	0.00%
JT3	北側	0. 00000	0.00008	0.021	0. 02108	0.00%

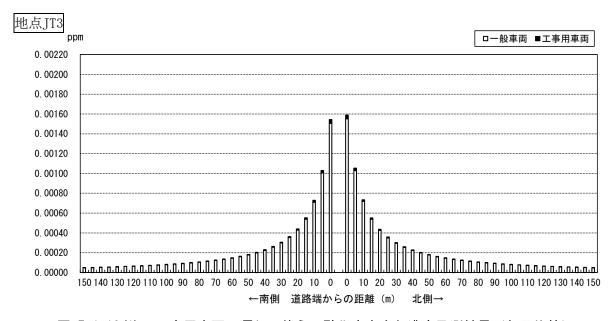
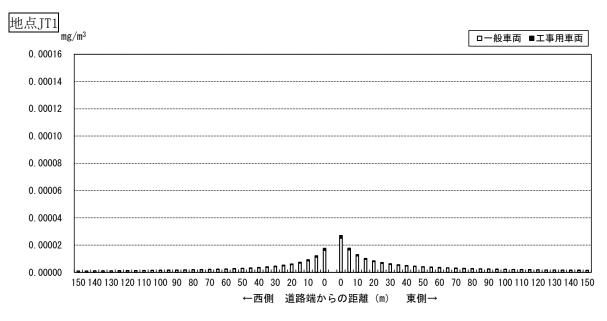
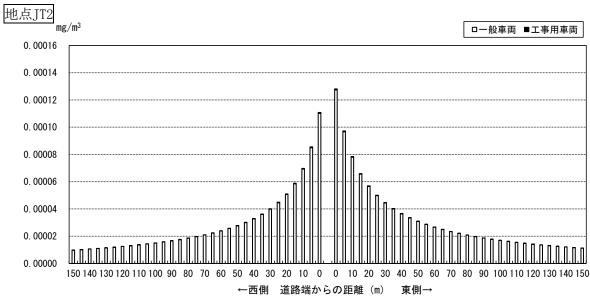




図 7.1-18(1) 工事用車両の運行に伴う二酸化窒素寄与濃度予測結果(年平均値)

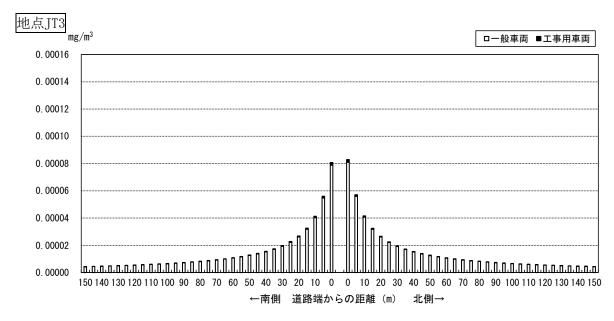


図 7.1-18(2) 工事用車両の運行に伴う浮遊粒子状物質寄与濃度予測結果(年平均値)

(b) 環境基準との比較

環境基準との比較のため、日平均値の年間98%又は2%除外値への換算を行った結果は、表 7.1-49に示すとおりです。

二酸化窒素における各予測地点の最大値は、地点JT1が西側、東側ともに0.026ppm、地点JT2が西側、東側ともに0.032ppm、地点JT3が南側、北側ともに0.026ppmでした。 浮遊粒子状物質における各予測地点の最大値は、地点JT1が東側の0.054mg/m³、地点JT2が西側、東側ともに0.056mg/m³、地点JT3が南側、北側ともに0.052mg/m³でした。

いずれも、環境基準を満足するものと予測します。

表 7.1-49(1) 工事用車両の運行に伴う二酸化窒素濃度予測結果(日平均値の年間98%値)

単位:ppm

		将来	濃度	——————————————————————————————————————
予測地	也点	年平均値 年間98%値		環境基準
TT 1	西側	0. 01225	0. 026	
JT1	東側	0. 01241	0. 026	
TTO	西側	0. 01666	0. 032	日平均値の年間98%値が0.04~
JT2	東側	0. 01694	0.032	0.06ppmのゾーン内又はそれ以下
TTO	南側	0. 01255	0. 026	
ЈТ3	北側	0. 01259	0. 026	

表 7.1-49(2) 工事用車両の運行に伴う浮遊粒子状物質予測結果 (日平均値の2%除外値)

単位:mg/m³

		将来濃度		
予測地	也点	年平均値 2%除外値		環境基準
TT 1	西側	0. 02202	0.053	
JT1	東側	0. 02203	0.054	
TΤO	西側	0. 02311	0.056	日平均値の2%除外値が
JT2	東側	0. 02313	0.056	0.10mg/m³以下
ЈТ3	南側	0. 02108	0.052	
JIS	北側	0. 02108	0.052	

7) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・工事関係車両は、幹線道路の走行、走行台数の抑制、適正走行等の運行管理を行います。
- ・工事の工程を調整し、工事用車両台数の平準化を図ります。

8) 評価

工事用車両の運行に伴う排ガスの影響について、二酸化窒素及び浮遊粒子状物質の日平均値の年間 98%又は 2%除外値への換算を行った結果、二酸化窒素における各予測地点の最大値は、地点 JT1 が西側、東側ともに 0.026ppm、地点 JT2 が西側、東側ともに 0.032ppm、地点 JT3 が南側、北側ともに 0.026ppm、浮遊粒子状物質における各予測地点の最大値は、地点 JT1 が東側の 0.054 mg/m³、地点 JT2 が西側、東側ともに 0.056 mg/m³、地点 JT3 が南側、北側ともに 0.052 mg/m³であり、環境基準への整合が図られているものと評価します。

また、工事関係車両は、幹線道路の走行、走行台数の抑制、適正走行等の運行管理を行う等の環境保全措置を実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減されているものと評価します。

施設の供用

(5) 廃棄物の搬出入に伴う粉じん等

1) 予測項目

予測項目は、廃棄物の搬出入に伴う廃棄物運搬車両、従業員通勤車両、薬品等搬入車両 及び焼却灰搬出車両(以下、「廃棄物運搬車両等」という。)の運行に伴い発生する粉じん 等(降下ばいじん量)としました。

2) 予測地域・地点

予測地域は、廃棄物運搬車両等の運行による影響が想定される範囲として、主要運行ルートの道路端から150mとしました。予測地点は、「資材及び機械等の運搬に用いる車両の運行に伴う粉じん等」と同様に、道路沿道大気質の現地調査地点を基本とし、図7.1-8に示した3地点(地点JT1、地点JT2及び地点JT3)としました。また、予測高さは、地上1.5mとしました。

3) 予測時期

予測時期は、廃棄物運搬車両等の運行台数が定常状態となる時期としました。

4) 予測手法

廃棄物運搬車両等の運行に伴う降下ばいじん量を対象として、工事用車両の運行と同様 に、「道路環境影響評価の技術手法」に示された手法に基づき予測を行いました。

(a) 予測手順

予測手順を図 7.1-19に示します。

降下ばいじん量について、道路構造等の道路条件、交通量及び1年間の地上気象調査 結果から設定した気象条件をもとに、解析式を用いて予測を行いました。

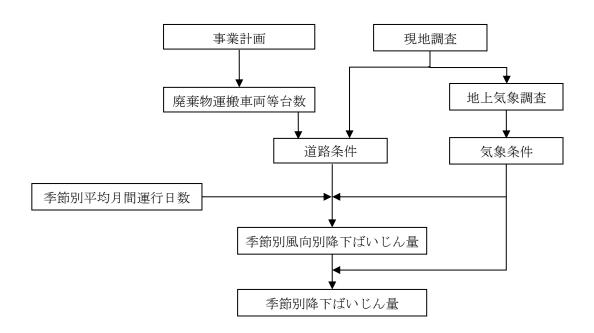


図 7.1-19 廃棄物運搬車両等の運行に伴う降下ばいじん量の予測手順

(b) 予測式

予測式は「(2) 資材及び機械等の運搬に用いる車両の運行に伴う粉じん等」と同様としました。

5) 予測条件

(a) 予測対象断面構成

予測地点における道路横断面構成は、「(2) 資材及び機械等の運搬に用いる車両の運行に伴う粉じん等」と同様としました。

(b) 廃棄物運搬車両等台数及び係数等

基準降下ばいじん量 (a) 及び降下ばいじんの拡散を表す係数 (c) 等は、「道路環境影響評価の技術手法」に基づき、表 7.1-50に示すとおり設定しました。また、月間の運行日数は26日としました。

表 7.1-50 廃棄物運搬車両等台数及び係数等

	7.100 庞米彻是			外可		
	廃棄物運搬	係	数			
区分	車両等台数			運行日数		
四月	[大型車]	a	С	(日/月)		
	(台/日)					
JT1	114					
JT2(側道)	30	0.0007	0.0	9.6		
JT2(本線)	134	0.0007	2. 0	26		
JT3	44					

注:係数は「(2) 資材及び機械等の運搬に用いる車両の運行に伴う粉じん等」の「a) 基本式」に示す記号参照。

係数 a : 基準降下ばいじん量 $(t/km^2/H/2\pi-y+)$ 、係数 c : 降下ばいじんの拡散を表す係数「道路環境影響評価の技術手法」に示される「現場内運搬 (舗装路+タイヤ洗浄装置)」の係数を設定しました。

(c) 気象条件

気象条件は、渕崎公園における1年間の地上気象調査結果に基づき、廃棄物運搬車両等の運行時間(地点JT1は7~17時、地点JT2及び地点JT3は7~18時)における季節別の風向、風速を用いて表 7.1-51に示すとおり設定しました。

表 7.1-51(1) 廃棄物運搬車両等運行時間帯における季節別風向出現割合及び 季節別風向別平均風速(地点JT1)

単位 出現頻度:%、平均風速:m/秒

季節,項目	風向	北北東	北東	東北東	東	東南東	南東	南南東	南	南南西	南西	西南西	西	西北西	北西	北北西	北	静穏
老	出現頻度	8.8	3. 4	1.7	1. 1	1. 2	2. 1	4.0	10.0	19. 9	12. 1	6.6	7. 2	2. 9	2. 3	3. 3	9. 2	4. 2
春季	平均風速	2.8	2. 3	2. 2	2.0	1. 1	1.2	2.0	2.5	2.8	2.5	1.9	1.8	1. 7	1.6	2. 1	3. 1	0.3
百壬	出現頻度	3. 0	2. 1	1.3	1.4	0.8	1.7	3. 5	19.0	21.9	25. 1	7. 2	4.5	2. 2	0.5	0. 7	2. 4	2. 7
夏季	平均風速	2. 1	1.8	1.6	1.2	1. 2	1.3	1. 7	3. 1	2. 7	2. 7	1.8	1. 7	1. 2	1.3	1. 3	1. 7	0.3
北天	出現頻度	16. 7	6.6	3. 3	2.8	1. 3	2.9	3.8	6.9	11. 7	6. 1	4. 7	2. 2	1. 4	3. 1	3. 3	19. 5	3. 4
秋季	平均風速	2.8	2. 5	2. 3	2. 1	1.8	2.3	1. 9	2.3	2.6	2.3	1. 4	1.4	1. 3	1.5	2. 0	3. 0	0. 2
冬季	出現頻度	12.5	3. 6	1.7	1.2	1. 2	2.0	3. 2	5.8	6. 5	5. 2	4. 2	7. 5	9. 0	9.0	7. 0	15. 7	4. 6
令学	平均風速	2. 3	1.6	1.7	1.6	1.0	0.9	2.0	2.6	2.6	2.2	1.7	2.0	2. 3	1. 9	1. 7	2. 7	0.3

注:風速0.4m/秒以下を静穏としました。

表 7.1-51(2) 廃棄物運搬車両等運行時間帯における季節別風向出現割合及び 季節別風向別平均風速(地点JT2、地点JT3)

単位 出現頻度:%、平均風速:m/秒

													- 기보.	口グルタスク	文 ・ /0	1 100) 黑迷。	111/1/5
季節,項目	風向	北北東	北東	東北東	東	東南東	南東	南南東	南	南南西	南西	西南西	西	西北西	北西	北北西	北	静穏
春季	出現頻度	8. 5	3. 0	1.6	1.0	1. 2	2. 1	3.8	10.4	19. 5	12.3	7.0	7. 9	3. 0	2. 4	3. 0	9. 2	4. 0
本 子	平均風速	2. 9	2. 3	2. 2	2.0	1. 1	1.3	2.0	2. 4	2. 7	2.5	1.8	1.8	1.6	1. 7	2. 0	3. 3	0.3
百壬	出現頻度	2. 9	1.8	1. 2	1.3	0.8	1.5	3. 4	18.0	22. 1	24. 7	8.8	4.9	2. 1	0.5	0.8	2.6	2.6
夏季	平均風速	2. 2	1.8	1.6	1.2	1. 2	1.3	1. 7	3. 1	2.6	2.7	1. 7	1.6	1. 2	1.5	1. 4	1.8	0.3
小子	出現頻度	16. 4	6.8	3. 2	2.9	2. 2	3. 4	3. 9	6.9	11. 3	6. 2	4.6	2.2	1. 4	3. 1	3. 2	19. 1	3. 2
秋季	平均風速	2.8	2. 4	2. 2	2. 1	1. 7	2. 1	1.9	2.3	2. 5	2. 2	1. 4	1.3	1. 3	1.5	1. 9	3. 1	0. 2
夕禾	出現頻度	12.3	3. 4	1.8	1.2	1.4	2.0	3.0	5. 6	6. 7	4.9	4. 7	7. 9	8. 9	8.8	7. 0	15. 9	4. 6
冬季	平均風速	2. 4	1.6	1.8	1.6	1.0	0.9	2.0	2.6	2.6	2. 2	1. 7	2.0	2. 3	1. 9	1. 7	2. 7	0.3

注:風速0.4m/秒以下を静穏としました。

6) 予測結果

予測結果を表 7.1-52に示します。

季節別降下ばいじん量における各予測地点の最大値は、地点JT1が東側の夏季で $0.16t/km^2/$ 月、地点JT2が東側の夏季で $0.09t/km^2/$ 月、地点JT3が北側の夏季で $0.07t/km^2/$ 月であり、降下ばいじん量に係る参考値を下回ります。

表 7.1-52 廃棄物運搬車両等による降下ばいじん量の予測結果

12 /.	1 02 15			- 5 4 4 1	160 070	/里の ア 例 和 木
국 2011 LUA . F		降下に	ざいじん 』	全 基/去注		
一	予測地点		夏季	秋季	冬季	参考値 ^注
TT 1	西側	0.04	0.02	0.06	0.06	
JT1	東側	0. 13	0.16	0.09	0.11	*********
TTO	西側	0.03	0.02	0.05	0.05	車両走行寄与の 降下ばいじん量が
JT2	東側	0.08	0.09	0.05	0.07	
JT3	南側	0.03	0.02	0.04	0.06	100/ Kiii / 万 赵
	北側	0.05	0.07	0.04	0.03	

注:「道路環境影響評価の技術手法」に示される降下ばいじん量に係る参考値。環境を保全する上での降下ばいじん量は、20t/km²/月(スパイクタイヤ粉じんにおける生活環境の保全が必要な地域の指標)が目安と考えられる。降下ばいじん量が比較的高い地域の値が10t/km²/月であることから、評価においては、これらの差である10t/km²/月が参考値とされています。

7) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・ごみの減量化を進め、廃棄物運搬車両等の運行台数を減らします。
- ・廃棄物運搬車両等の運行においては、制限速度の遵守を運転手に指導します。

8) 評価

廃棄物運搬車両等の運行に伴う降下ばいじん量の影響について、地点JT1が東側の夏季で $0.16t/km^2/$ 月、地点JT2が東側の夏季で $0.09t/km^2/$ 月、地点JT3が北側の夏季で $0.07t/km^2/$ 月であり、降下ばいじん量に係る参考値への整合が図られているものと評価します。

また、ごみの減量化を進め、廃棄物運搬車両等の運行台数を減らす等の環境保全措置を実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減されているものと評価します。

(6) 施設の稼働に伴う排出ガス

1) 予測項目

予測項目は、施設の稼働に伴う排出ガスの影響としました。

年平均値(長期平均濃度)については、二酸化硫黄、窒素酸化物(二酸化窒素)、浮遊 粒子状物質、水銀、ダイオキシン類を対象に予測を行いました。

1時間値(短期高濃度)については、二酸化硫黄、窒素酸化物(二酸化窒素)、浮遊粒子 状物質、塩化水素を対象とし、表 7.1-53に示す比較的高濃度が想定される気象条件(大 気安定度不安定時、上層逆転層発生時、逆転層崩壊時、ダウンウォッシュ時)ごとに予測 を行いました。

2) 予測地域・地点

年平均値の予測地域は、施設の稼働による影響が想定される範囲として、事業計画地を中心とした半径1,000mの範囲としました。予測地点は、最大着地濃度地点及び一般環境大気質の現地調査地点と同様の5地点(地点KT1~地点KT5)の、計6地点としました。1時間値の予測地域は、事業計画地の風下主軸上1,000mの範囲としました。

3) 予測時期

予測時期は、施設の稼働が定常状態となる時期としました。

4) 予測手法

ダウンウォッシュ時

年平均値については、「窒素酸化物総量規制マニュアル (新版)」(平成12年12月 公害研究対策センター)に示されたプルーム式・パフ式を基本とした大気拡散式により、年間の平均的な気象条件での値を予測しました。

1時間値については、「窒素酸化物総量規制マニュアル(新版)」(平成12年12月 公害研究対策センター)及び「ごみ焼却施設環境アセスメントマニュアル」(昭和61年 厚生省生活衛生局監修)に示されたプルーム式を基本とした大気拡散式により予測を行いました。

気象条件	設定方法
	風速と大気安定度の組合せのうち、汚染物質の拡散が活発で近傍の着地濃度が高濃度に
大気安定度不安定時	なりやすい気象条件(大気安定度A(強不安定)、大気安定度B(並不安定))を設定しま
	した。
	下層逆転がなく、上層に逆転層が存在し、逆転層が「ふた」の役割をして排ガスを閉じ込める状態になる場合の気象条件を高層気象観測結果も踏まえ設定しました。なお、煙
上層逆転層発生時	突の上空に気温の逆転層が停滞する場合、煙突からの排ガスは上層逆転層内へは拡散さ
工作之间加工机	れず、地表と逆転層の間で反射を繰返し、地上に高い濃度をもたらすことがあることを
	設定の理由とします。
·	接地逆転層が日の出とともに解消し、安定な接地逆転層内に溜まっていた煙が短時間に
逆転層崩壊時	拡散して地表へ到達し、高濃度になりやすいため設定しました。
	風が強いとき、風向きの煙突背後に生ずる渦に排ガスが巻き込まれる場合があるため、

表 7.1-53 1時間値予測の気象条件の設定方法

地上に排ガスが吹き付けられて高濃度になりやすい気象条件として設定しました。

(a) 排出ガスによる年平均値

a) 予測手順

予測手順を図 7.1-20に示します。

施設の稼働による大気質の予測手順は、事業計画から汚染物質排出量等を設定し、 1年間の地上気象調査結果から設定した気象条件をもとに、プルーム式、パフ式等の 拡散式により予測を行いました。

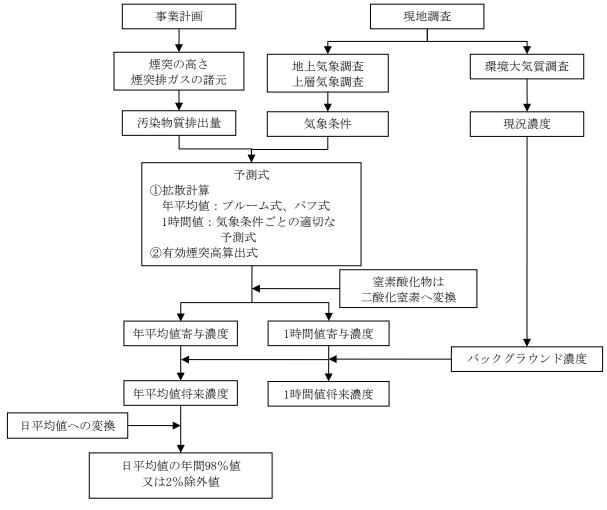


図 7.1-20 施設の稼働による排出ガスの予測手順

予測式 b)

予測式は以下のとおりです。

有風時(風速1.0m/秒以上): プルームの長期平均式 7)

$$C(R, z) = \sqrt{\frac{1}{2\pi}} \cdot \frac{Q_{p}}{(\pi / 8) R \sigma_{z} u} \cdot \left[exp \left\{ -\frac{(z - H_{e})^{2}}{2\sigma_{z}^{2}} \right\} + exp \left\{ -\frac{(z + H_{e})^{2}}{2\sigma_{z}^{2}} \right\} \right] \cdot 10^{6}$$

弱風時 (風速0.5~0.9m/秒): 弱風パフ式 1)

$$C(R,z) = \frac{1}{\sqrt{2\pi}} \cdot \frac{Q_p}{(\pi/8) \gamma} \cdot \left[\frac{1}{\eta_-^2} \cdot \exp\left(-\frac{u^2(z - H_e)^2}{2 \gamma^2 \eta_-^2}\right) + \frac{1}{\eta_+^2} \cdot \exp\left(-\frac{u^2(z + H_e)^2}{2 \gamma^2 \eta_+^2}\right) \right] \cdot 10^6$$

$$\eta_-^2 = R^2 + \frac{\alpha^2}{\gamma^2} (z - H_e)^2$$

$$\eta_+^2 = R^2 + \frac{\alpha^2}{\gamma^2} (z + H_e)^2$$

$$R^2 = x^2 + y^2$$

無風時(風速0.4m/秒以下): 簡易パフ式

$$C(R, z) = \frac{Q_p}{(2\pi)^{3/2} \gamma} \cdot \left\{ \frac{1}{R^2 + (\alpha^2/\gamma^2) \cdot (H_e - z)^2} + \frac{1}{R^2 + (\alpha^2/\gamma^2) \cdot (H_e + z)^2} \right\} \cdot 10^6$$

[記 号]

C(R, z): 地点(R, z) における汚染物質の濃度 (ppm、mg/m³)

:煙源からの水平距離 (m)

:煙源から風向に沿った風下距離 (m)

:風向に直角な水平距離 (m) : 計算地点の高さ (1.5m)

:汚染物質の排出量 (m³N/秒、kg/秒)

:煙突頂部の風速 (m/秒)

:有効煙突高 (m)

:有風時の鉛直方向の拡散パラメータ (m) :無風時の水平方向の拡散パラメータ (m/秒) :無風時の鉛直方向の拡散パラメータ (m/秒)

c) 拡散パラメータ

有風時における鉛直方向の拡散パラメータは、「(3) 建設機械の稼働に伴う窒素酸 化物・浮遊粒子状物質」と同様としました。

d) 有効煙突高の設定

有効煙突高は、有風時(風速1.0m/秒以上)については、CONCAWE式で求めた上昇高さを用いました。弱風時(風速0.5~0.9m/秒)及び無風時(風速0.4m/秒以下)については、Briggs式(風速0.0m/秒)とCONCAWE式(風速2.0m/秒)で求めた上昇高さを線形内挿(弱風時:風速0.7m/秒、無風時:風速0.4m/秒)して求めた値を用いました。

 $H_e = H_0 + \Delta H$

CONCAWE式: Δ H=0.0855 • $Q_H^{1/2}$ • $u^{-3/4}$

Briggs式 : Δ H=0.979 · $Q_H^{1/4}$ · $(d\theta/dz)^{-3/8}$

[記号]

 H_{0} : 有効煙突高 (m) H_{0} : 煙突実体高 (m) ΔH : 排出熱量 (J/秒)

 $Q_H = \rho \cdot C_p \cdot Q \cdot \Delta T$

ρ : 0℃における排出ガス密度 (1.293×10³g/m³)

 Cp
 : 定圧比熱 (1.0056J/(K・g))

 Q
 : 排ガス量(湿り) (m³N/秒)

Δ T : 排ガス温度と気温との温度差 (℃)

u : 煙突頂部の風速 (m/秒)

d θ /dz : 温位勾配 (℃/m) (昼間:0.003、夜間:0.010)

e)煙源条件

煙源条件を表 7.1-54に示します。

処理能力、焼却炉数、煙突高さについては、「第2章 事業の目的及び内容」に示したとおりとしました。また、「第2章 事業の目的及び内容」に示した排出ガス管理値を、硫黄酸化物、窒素酸化物、浮遊粒子状物質、ダイオキシン類、水銀、塩化水素の排出濃度として設定しました。

表 7.1-54 煙源条件

衣 /. 1 ○4				
項	目	諸元		
処理能	 七力	300t/日		
焼却炊	戸数	2炉(煙突2本)		
煙突高	うさ	59m		
#15-147 月 .注2	湿りガス量	43,080m³N/時		
排ガス量 ^{注2} (1炉当たり)	かと ガラ 具	36,060m³N/時		
(132) ヨたり)	乾きガス量	(02濃度4.6%)		
排ガス沿	温度 ^{注2}	160°C		
排ガス吐と	出速度 ^{注2}	27.96m/秒		
煙突口	径 ^{注2}	0.93m		
	硫黄酸化物	10ppm		
	窒素酸化物	50ppm		
排出濃度	ばいじん ^{注1}	$0.01 { m g/m^3 N}$		
(02濃度12%	ダイオキシン	0.05 / 3		
換算値)	類	0.05ng-TEQ/m^3		
	水銀	$30\mu\;\mathrm{g/m^3N}$		
	塩化水素	ЗОррт		

注1: ばいじんは、燃焼等に伴い発生する固体粒子状物質であり、様々な粒径のものが含まれますが、このうち粒径が $10\,\mu$ m以下のものが燃焼由来の浮遊粒子状物質です。予測にあたっては、より影響の大きくなる条件を想定し、ばいじんを全て浮遊粒子状物質とみなして排出濃度を設定しました。

注2:施設計画に係るメーカーヒアリング結果に基づき設定しています。

f) 気象条件

風向は、渕崎公園における1年間の地上気象調査結果に基づき設定しました。風速は、渕崎公園における1年間の地上気象調査結果を以下に示すべき乗則により、地上高59mの風速に補正して用いました。べき指数Pは、表 7.1-55に示す大気安定度ごとの値を用いました。大気安定度は、1年間の地上気象調査結果を用いて設定しました。べき乗則による補正式は以下のとおりです。

 $U_z = U_s (Z/Z_s)^{-p}$

[記号]

 Uz
 : 上空風の風速 (m/秒)

 Us
 : 地上風の風速 (m/秒)

Z : 高度 (m)

Zs : 地上風測定高度 (m)

P :べき指数

表 7.1-55 べき指数の値P

パスキル安定度	A	В	С	D	Е	FとG
Р	0. 1	0. 15	0. 20	0. 25	0. 25	0.30

出典:「窒素酸化物総量規制マニュアル[新版]」(平成12年12月 公害研究対策センター)

g) バックグラウンド濃度

予測地点におけるバックグラウンド濃度は、表 7.1-56に示すとおり設定しました。 地点KT1~地点KT5におけるバックグラウンド濃度は、一般環境大気質の現地調査結果 における各地点のそれぞれの4季平均値としました。また、最大着地濃度地点のバッ クグラウンド濃度は、全地点の4季平均値の中の最大値としました。

表 7.1-56 バックグラウンド濃度 (排出ガスによる年平均値)

地点	二酸化硫黄 (ppm)	二酸化窒素 (ppm)	浮遊粒子状物質 (mg/m³)	水銀 (μg/m³)	ダイオキシン類 (pg-TEQ/m³)
最大着地濃度地点	0.001	0.015	0. 023	0.0016	0. 041
KT1	0.001	0.013	0.022	0.0015	0. 031
KT2	0.001	0.012	0.022	0.0016	0. 033
КТЗ	0.001	0.015	0. 023	0.0015	0. 041
KT4	0.001	0.011	0. 021	0.0015	0. 023
KT5	0.001	0.011	0.022	0.0015	0. 030

h) 硫黄酸化物から二酸化硫黄への変換

硫黄酸化物は、全てが二酸化硫黄になるものとして予測しました。

i) 窒素酸化物から二酸化窒素への変換

窒素酸化物から二酸化窒素への変換は、以下に示す指数近似式Iを使用しました。

$$[NO_2] = [NO_X]_D \cdot \left[1 - \frac{\alpha}{1+\beta} \{exp(-Kt) + \beta\}\right]$$

[記号]

[NO₂] :二酸化窒素の濃度 (ppm)

[NOx]D: 拡散計算から得られた窒素酸化物の濃度 (ppm)

: 排出源近傍での一酸化窒素と窒素酸化物の比(=0.83)

: 平衡状態を近似する定数(昼:0.3、夜:0.0)

t : 拡散時間(秒) :実験定数(s⁻¹) $K = \gamma \cdot u \cdot [0_3]_B$

γ : 定数 (=0.0062) u :風速 (m/秒)

 $[0_3]_B:$ バックグラウンド・オゾン濃度 (ppm)

(令和2年6月~令和3年5月の皆実小学校測定局※の値により

表 7.1-57のとおり設定)

※オキシダント(オゾン)濃度の常時監視を行っている最寄りの一般環境大気測定局。

表 7.1-57 バックグラウンド・オゾン濃度

単位:ppm

風速階級	昼間			夜間		
(H=59m)	不安定時	中立時	安定時	不安定時	中立時	安定時
有風時	0.037	0.027	_	_	0.024	0. 027
弱風時	0.021	0. 018	_	_	0.015	0. 021
無風時	0.018	0.015	_	_	0.014	0.023

j) 年平均値から日平均値の年間98%値又は2%除外への変換

二酸化硫黄、二酸化窒素及び浮游粒子状物質については、年平均値の予測結果を環 境基準と比較するため、将来濃度予測結果(年平均値)を日平均値の年間2%除外値 又は年間98%値へ変換しました。

変換については、事業計画地からおおむね半径3km以内の一般環境大気測定局(皆 実小学校測定局、海田高校測定局)の平成27~令和元年度の測定結果を用いて、年平 均値と日平均値(二酸化硫黄、浮遊粒子状物質:2%除外値、二酸化窒素:年間98% 値) との関係から最小二乗法により求めた換算式を用いました。換算式を表 7.1-58 に示します。

表 7.1-58 年平均値から日平均値(2%除外値、年間98%値)への換算式

項目	区分	換算式
二酸化硫黄	一般環境	(日平均値の2%除外値) =1.5204× (年平均値) +0.0017 (相関係数0.90)
二酸化窒素	一般環境	(日平均値の年間98%値) =1.0519× (年平均値) +0.0128 (相関係数0.79)
浮遊粒子状物質	一般環境	(日平均値の2%除外値) =3.7595×(年平均値)-0.0192 (相関係数0.77)

(b) 排出ガスによる1時間値

a) 大気安定度不安定時

7) 予測式

予測は、「窒素酸化物総量規制マニュアル(新版)」(平成12年12月 公害研究対策センター)に基づく大気拡散式(プルーム式)により行いました。予測式は以下のとおりです。

$$C(x,y,z) = \frac{Q_{p}}{2 \pi \sigma_{y} \sigma_{z} u} \cdot \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) \left[\exp \left(-\frac{(z - H_{e})^{2}}{2 \sigma_{z}^{2}}\right) + \exp \left(-\frac{(z + H_{e})^{2}}{2 \sigma_{z}^{2}}\right) \right]$$

[記 号]

C(x,y,z) : 地点(x,y,z)における汚染物質の濃度 $(ppm,mg/m^3)$

x :煙源から風向に沿った風下距離 (m)

y : 風向に直角な水平距離 (m) z : 計算地点の高さ (=1.5m)

Qp: : 汚染物質の排出量 (m³N/秒、kg/秒)

u:排出源高さの風速 (m/秒)

H。 : 有効煙突高 (m)

σ_y : 有風時の水平方向の拡散パラメータ (m)σ_z : 有風時の鉛直方向の拡散パラメータ (m)

() 拡散パラメータ

有風時の鉛直方向の拡散パラメータは、「(a) 排出ガスによる年平均値」と同様としました。有風時における水平方向の拡散パラメータは、表 7.1-59に示すパスキル・ギフォード図の近似関数を使用しました。また、有風時の水平方向の拡散パラメータ σ_v は、以下のとおり、評価時間に応じた修正をして用いました。

$$\sigma_{y} = \sigma_{yp} \left(\frac{t}{t_{p}} \right)^{0.2}$$

[記 号]

t:評価時間(=60分)

t_P : パスキル・ギフォード図の評価時間 (=3分)

σ_{yp}:パスキル・ギフォード図から求めた水平方向の拡散パラメータ (m)

表 7.1-59 有風時の水平方向の拡散パラメータ(パスキル・ギフォード図の近似関数) $\sigma_{v}(x) = \gamma_{v} \cdot x^{\alpha y}$

安定度	αу	γу	風下距離 x (m)
Λ	0.901	0.426	$0 \sim 1,000$
A	0.851	0.602	1,000 ~
В	0. 914	0. 282	$0 \sim 1,000$
D	0.865	0.396	1,000 ~
С	0. 924	0. 1772	$0 \sim 1,000$
C	0.885	0. 232	1,000 ~
D	0.929	0. 1107	$0 \sim 1,000$
D	0.889	0. 1467	1,000 ~
Е	0. 921	0.0864	$0 \sim 1,000$
E	0.897	0. 1019	1,000 ~
F	0. 929	0.0554	$0 \sim 1,000$
Г	0.889	0.0733	1,000 ~
G	0. 921	0.0380	0 ~ 1,000
G	0.896	0.0452	1,000 ~

出典:「窒素酸化物総量規制マニュアル [新版]」(平成12年12月 公害研究対策センター)

ウ) 有効煙突高の設定

有効煙突高の設定は、「(a) 排出ガスによる年平均値」と同様としました。

1) 煙源条件

煙源条件及び排出濃度は、「(a)排出ガスによる年平均値」と同様としました。

力) 気象条件

風速と大気安定度の組合せについては、比較的高濃度が想定される気象条件として 大気安定度が不安定な場合とし、表 7.1-60に示すとおり設定しました。

表 7.1-60 大気安定度不安定時における気象条件の設定

大気安定度	風速(m/秒)					
人気女足及	1.0	2. 0	3. 0			
A (強不安定)	0	0	_			
B (並不安定)	0	0	0			

注:○印は選定した項目。

カ) バックグラウンド濃度

二酸化硫黄、二酸化窒素、浮遊粒子状物質のバックグラウンド濃度は、最寄りの一般環境大気質である皆実小学校測定局の1時間値の最大値(令和2年6月~令和3年5月)としました。また、塩化水素のバックグラウンド濃度は、一般環境大気質の現地調査結果の最大値としました。

二酸化硫黄、二酸化窒素、浮遊粒子状物質、塩化水素のバックグラウンド濃度を表7.1-61に示します。

表 7.1-61 バックグラウンド濃度

			1124124	
項目	二酸化硫黄	二酸化窒素	浮遊粒子状物質	塩化水素
	(ppm)	(ppm)	(mg/m^3)	(ppm)
バックグラウンド濃度	0. 011	0. 055	0.098	0.001

キ) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、「(a) 排出ガスによる年平均値」 と同様としました。

b) 上層逆転層発生時

7) 予測式

予測は、「窒素酸化物総量規制マニュアル (新版)」(平成12年12月 公害研究対策センター)に基づく大気拡散式 (プルーム式)により行いました。予測式は以下のとおりです。

$$C(x,z) = \frac{Q_{p}}{2 \pi \sigma_{v} \sigma_{z} u} \cdot \sum_{n=-\infty}^{\infty} \left[exp \left\{ -\frac{(z - H_{e} + 2nL)^{2}}{2 \sigma_{z}^{2}} \right\} + exp \left\{ -\frac{(z + H_{e} + 2nL)^{2}}{2 \sigma_{z}^{2}} \right\} \right]$$

[記号]

C(x,z) : 地点(x,z)における汚染物質の濃度 $(ppm, mg/m^3)$

x : 煙源からの風下距離 (m)z : 計算地点の高さ (=1.5m)

Q。: 汚染物質の排出量 (m³N/秒、kg/秒)

L : 混合層高度 (m)

u : 煙突頂部の風速 (m/秒)

H。 : 有効煙突高 (m)

σ_y : 有風時の水平方向の拡散パラメータ (m)σ_Z : 有風時の鉛直方向の拡散パラメータ (m)

n: 混合層内での反射回数(一般的に収束するとされている3回とした)

イ) 拡散パラメータ

拡散パラメータは、「a) 大気安定度不安定時」と同様としました。

ウ) 有効煙突高の設定

有効煙突高の設定は、「(a) 排出ガスによる年平均値」と同様としました。なお、逆転層下面高度は、影響が最大となる状態として有効煙突高に等しくなる条件としました。

1) 煙源条件

煙源条件及び排出濃度は、「(a) 排出ガスによる年平均値」と同様としました。

風速と大気安定度の組合せのうち、上層逆転層発生時に比較的高濃度が生じやすい 気象条件として、「a) 大気安定度不安定時」と同様としました。

か) バックグラウンド濃度

将来バックグラウンド濃度については、「a) 大気安定度不安定時」と同様としました。

キ) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、「(a) 排出ガスによる年平均値」 と同様としました。

c) 逆転層崩壊時

7) 予測式

予測は、「ごみ焼却施設環境アセスメントマニュアル」(昭和61年 (社)全国都市清 掃会議)における大気拡散式(TVAモデル(カーペンターモデル))により行いました。 予測式は以下のとおりです。

$$\mathbf{C}_{\text{max}} = \frac{\mathbf{Q}_{\text{p}}}{\sqrt{2 \, \pi^{\bullet}} \, \sigma_{\text{yf}} {\cdot} \mathbf{u} {\cdot} \mathbf{L}_{\text{f}}}$$

また、濃度が最大 (Cmax)となる風下距離Xmaxは、次式で算出される。

$$X_{\text{max}} = \mathbf{u} \cdot \rho_{\mathbf{a}} \cdot C_{\mathbf{p}} \frac{L_{\mathbf{f}}^{2} - H_{\mathbf{0}}^{2}}{4 \cdot \kappa}$$

[記 号]

Cmax : 汚染物質の地上最大濃度 (ppm、mg/m³) :汚染物質の排出量 (m³N/秒、kg/秒)

σ_{vf}:フュミゲーション時の排出ガスの水平方向の拡散幅(m)

 $\sigma_{\rm vf} = \sigma_{\rm vc} + 0.47 \cdot H_{\rm e}$

σ_{vc}: カーペンターらによる水平方向の拡散幅 (m)

 H_e : 有効煙突高 (H_e=H₀+ ΔH) (m)

H₀ : 煙突実体高 (m) ΔH: 排煙上昇高 (m)

:煙突頂部の風速 (m/秒)

L_f:フュミゲーション時の煙の上端高さ、又は逆転層が崩壊する高さ(m)

 $L_f = 1.1 \cdot (H_e + 2.15 \cdot \sigma_{zc})$

σ_{zc}:カーペンターらによる鉛直方向の拡散幅 (m)

X_{max} :最大濃度出現距離 (m)

ρ_a : 空気の密度 (g/m³)

:大気の渦伝導度(J/m・K・秒)

C_p : 空気の定圧比熱 (J/K・g)

有効煙突高の設定

有効煙突高の設定は、「(a) 排出ガスによる年平均値」と同様としました。

ウ) 煙源条件

煙源条件及び排出濃度は、「(a) 排出ガスによる年平均値」と同様としました。

1) 気象条件

逆転層崩壊に伴うフュミゲーション発生時について、地上濃度に影響を及ぼすと考えられる気象条件を選定し、表 7.1-62に示すとおり設定しました。

表 7.1-62 逆転層崩壊時における気象条件の設定

カーペンターモデル	風速(m/秒)					
の大気安定度	1.0	2.0	3.0	4.0	5.0	6. 0
Moderate Inversion ^{注1}	0	0	0	0	0	0

注1:拡散パラメータのうち、逆転層に当たるModerate Inversion (適度な逆転の意) を示しています。

注2:○印は選定した項目です。

オ) バックグラウンド濃度

将来バックグラウンド濃度については、「a) 大気安定度不安定時」と同様としました。

カ) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、「(a) 排出ガスによる年平均値」 同様としました。

d) ダウンウォッシュ時

7) 予測式

予測式は、「a) 大気安定度不安定時」と同様としました。

イ) 拡散パラメータ

拡散パラメータは、「a)大気安定度不安定時」と同様としました。

ウ) 有効煙突高の設定

有効煙突高計算式(Briggs式)は以下のとおりとしました。

$$H_e = H_0 + \Delta H$$

$$\Delta H = 2 \left(\frac{V_s}{u} - 1.5 \right) D_s$$

「記号]

H。 : 有効煙突高 (m)H₀ : 煙突実体高 (m)Δ H : 排煙上昇高 (m)

V_s : 排ガスの吐出速度 (m/秒) u : 煙突頂部の風速 (m/秒)

D_s :煙突径 (m)

I) 煙源条件

煙源条件及び排出濃度は、「(a)排出ガスによる年平均値」と同様としました。

力) 気象条件

風速が早くなると拡散が促進されて大気濃度は小さくなるため、一般的にダウンウォッシュが発生すると想定される最も遅い風速の場合に最大濃度となることから、ダウンウォッシュが発生するとされる排出ガス吐出速度の2/3倍の風速としました。大気安定度は、風速の条件より大気の状態が弱不安定又は中立となることから、C、Dとしました。

か) バックグラウンド濃度

将来バックグラウンド濃度については、「a) 大気安定度不安定時」と同様としました。

キ) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、「(a) 排出ガスによる年平均値」 と同様としました。

5) 予測結果

(a) 排出ガスによる年平均値

a) 年平均值

排出ガスによる二酸化硫黄、二酸化窒素、浮遊粒子状物質、水銀及びダイオキシン類の年平均値を表 7.1-63及び図 7.1-21に示します。

最大着地濃度は、二酸化硫黄が0.00008ppmで寄与率は7.4%、二酸化窒素が0.00010ppmで寄与率は0.7%、浮遊粒子状物質が0.00008mg/m³で寄与率は0.3%、水銀が0.00024 μ g/m³で寄与率は13.0%、ダイオキシン類が0.00040pg-TEQ/m³で寄与率は1.0%でした。

表 7.1-63(1) 排出ガスによる予測結果(最大着地濃度地点、年平均値)

予測項目	排出ガス 寄与濃度 ①	バックグラウンド 濃度 ②	将来濃度 ③ = ① + ②	寄与率 (%) ① / ③×100
二酸化硫黄 (ppm)	0.00008	0.001	0.00108	7.4%
二酸化窒素(ppm)	0.00010	0.015	0.01510	0.7%
浮遊粒子状物質(mg/m³)	0.00008	0.023	0.02308	0.3%
水銀 (μg/m³)	0.00024	0.0016	0.00184	13.0%
ダイオキシン類(pg-TEQ/m³)	0.00040	0. 041	0.04140	1.0%

注:最大着地濃度出現距離は二酸化窒素で730m、それ以外の物質は660mです。

表 7.1-63(2) 排出ガスによる予測結果(その他の予測地点、年平均値)

衣 7.1-03(2) 特山ガベによるア劇和末(ての他のア劇地点、十十句他)						
予測項目	予測地点	排出ガス 寄与濃度 ①	バックグラウンド 濃度 ②	将来濃度 ③ = ① + ②	寄与率(%) ① / ③×100	
	KT1	0.00002	0.001	0.00102	2.1%	
一曲小水井	KT2	0.00003	0.001	0.00103	2. 7%	
二酸化硫黄 (ppm)	KT3	0.00005	0.001	0.00105	4.6%	
(ррш)	KT4	0.00006	0.001	0.00106	6.0%	
	KT5	0.00002	0.001	0.00102	1. 7%	
	KT1	0.00002	0. 013	0.01302	0. 2%	
一冊ルク書	KT2	0.00002	0.012	0.01202	0. 2%	
二酸化窒素 (ppm)	KT3	0.00007	0. 015	0.01507	0.4%	
(ррш)	KT4	0.00009	0. 011	0.01109	0.8%	
	KT5	0.00002	0. 011	0.01102	0.2%	
	KT1	0.00002	0. 022	0.02202	0.1%	
河本村フルサー	KT2	0.00003	0.022	0.02203	0.1%	
浮遊粒子状物質 (mg/m³)	KT3	0.00005	0.023	0.02305	0.2%	
(1115/111/	KT4	0.00006	0. 021	0.02106	0.3%	
	KT5	0.00002	0.022	0.02202	0.1%	
	KT1	0.00007	0. 0015	0.00157	4. 2%	
-J. AH	KT2	0.00008	0.0016	0.00168	5.0%	
水銀 (μg/m³)	KT3	0.00015	0. 0015	0.00165	8.8%	
(\mu \ g / \text{ iii } /	KT4	0.00019	0.0015	0.00169	11.3%	
	KT5	0.00005	0.0015	0.00155	3.3%	
	KT1	0.00011	0. 031	0.03111	0.4%	
ガノナセミハン粧	KT2	0.00014	0. 033	0.03314	0.4%	
ダイオキシン類 (pg-TEQ/m³)	KT3	0.00024	0. 041	0.04124	0.6%	
(bg ira/iii)	KT4	0.00032	0. 023	0.02332	1.4%	
	KT5	0.00009	0.030	0.03009	0.3%	

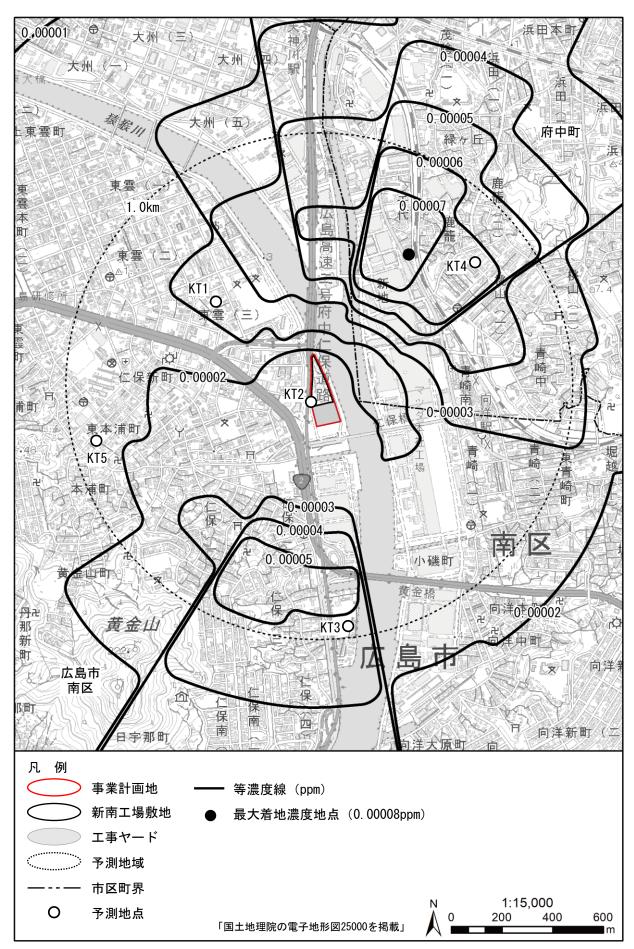


図 7.1-21(1) 排出ガスによる二酸化硫黄濃度寄与濃度予測結果(年平均値)

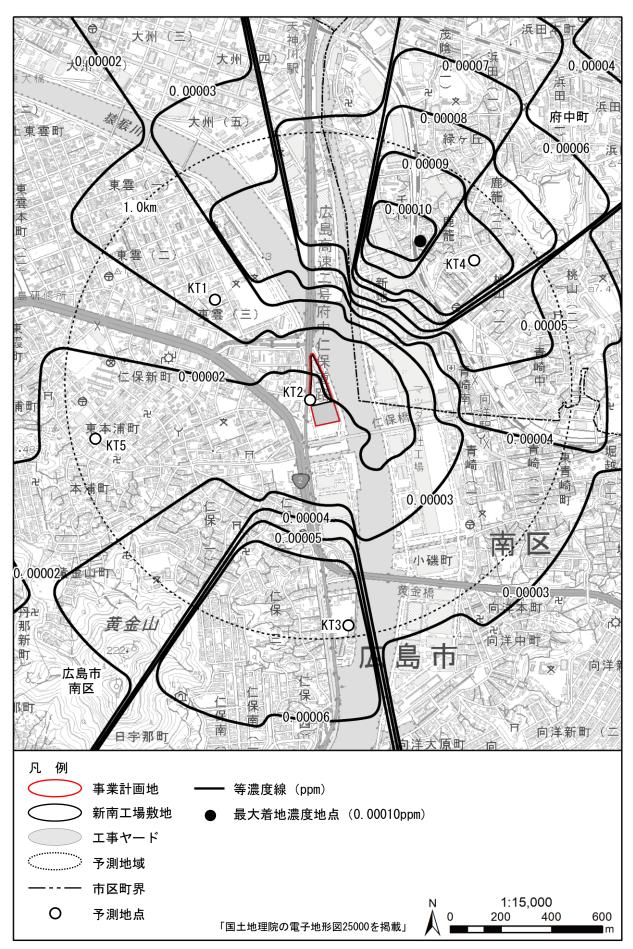


図 7.1-21(2) 排出ガスによる二酸化窒素濃度寄与濃度予測結果(年平均値)

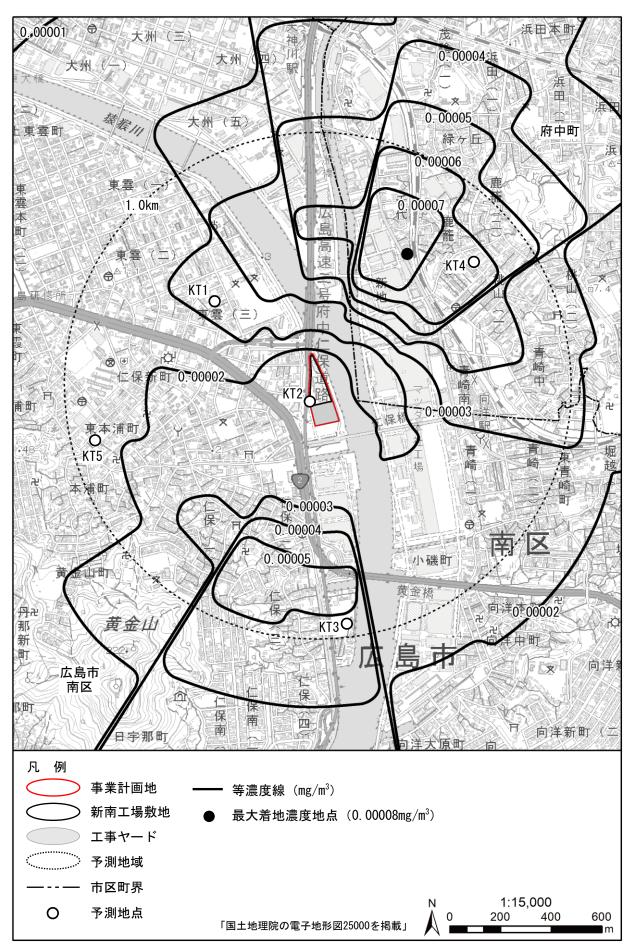


図 7.1-21(3) 排出ガスによる浮遊粒子状物質濃度寄与濃度予測結果(年平均値)

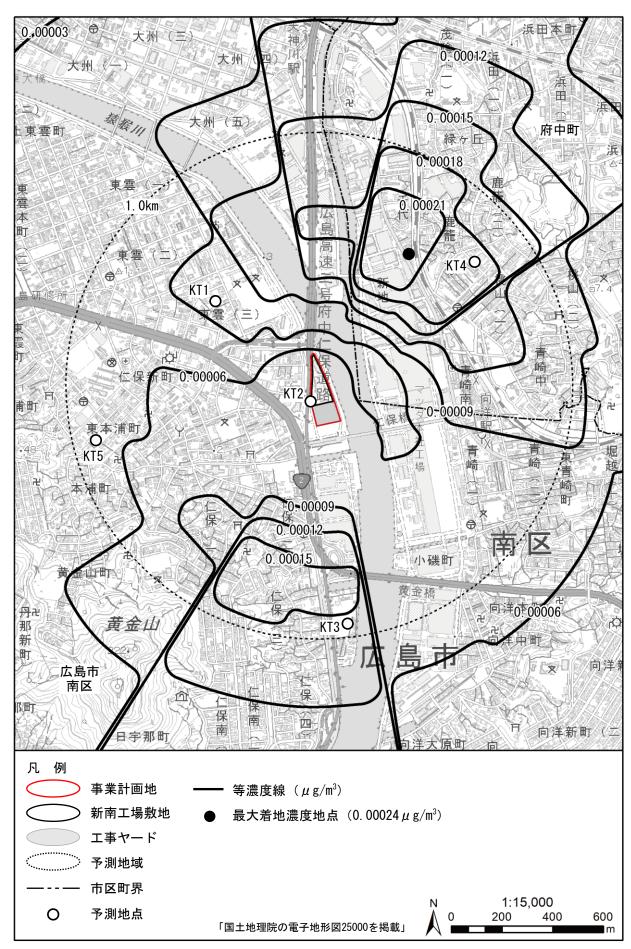


図 7.1-21(4) 排出ガスによる水銀濃度寄与濃度予測結果(年平均値)

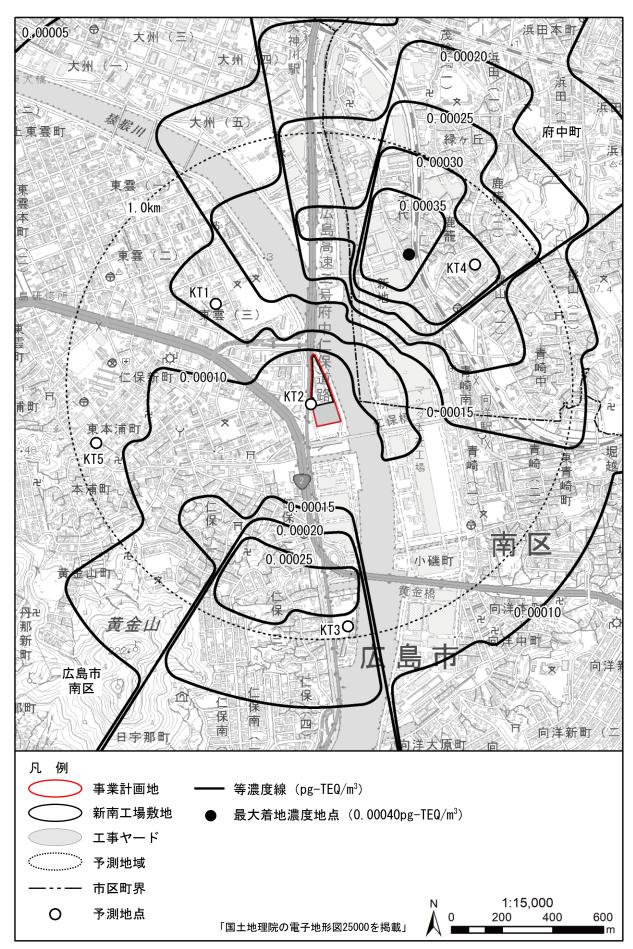


図 7.1-21(5) 排出ガスによるダイオキシン類濃度寄与濃度予測結果(年平均値)

b) 環境基準等との比較

環境基準との比較のため、二酸化硫黄、二酸化窒素、浮遊粒子状物質について日平均値の年間98%又は2%除外値への換算を行った結果は、表 7.1-64に示すとおりです。最大着地濃度地点では、二酸化硫黄の2%除外値が0.003ppm、二酸化窒素の年間98%値が0.029ppm、浮遊粒子状物質の2%除外値が0.068mg/m³、水銀の年平均値が 0.00184μ g/m³、ダイオキシン類の年平均値が0.04140pg-TEQ/m³であり、いずれも環境基準等を満足するものと予測します。

表 7.1-64(1) 排出ガスによる予測結果 (最大着地濃度地点、環境基準等との比較)

	将来濃度		
項目	年平均値	日平均値の98%値 又は2%除外値	環境基準等
二酸化硫黄 (ppm)	0.00108	0.003	日平均値の2%除外値が 0.04ppm以下
二酸化窒素 (ppm)	0.01510	0. 029	日平均値の年間98%値が0.04~ 0.06ppmのゾーン内又はそれ以下
浮遊粒子状物質(mg/m³)	0. 02308	0. 068	日平均値の2%除外値が 0.10mg/m³以下
水銀 (μg/m³)	0.00184	_	年平均値0.04μg/m³以下 ^注
ダイオキシン類(pg-TEQ/m³)	0.04140	_	年平均值0.6pg-TEQ/m³以下

注:「今後の有害大気汚染物質対策のあり方について(第七次答申)」(平成15年 中央環境審議会)に示される指針値

表 7.1-64(2) 排出ガスによる予測結果 (その他の予測地点、環境基準等との比較)

衣 7.1-04(Z)	沙田>>>(1=0)		207] 浏地点、垛块2	6十分にの元秋/
		将另	平濃度	
項目	予測地点	年平均値	日平均値の98%値 又は2%除外値	環境基準等
	KT1	0.00102	0.003	
二酸化硫黄	KT2	0.00103	0.003	日平均値の2%除外値が
	KT3	0.00105	0.003	
(ppm)	KT4	0.00106	0.003	0.04ppm以下
	KT5	0.00102	0.003	
	KT1	0.01302	0.027	
二酸化窒素	KT2	0. 01202	0.025	日平均値の年間98%値が
	KT3	0.01507	0.029	0.04~0.06ppmのゾーン
(ppm)	KT4	0. 01109	0.024	内又はそれ以下
	KT5	0.01102	0.024	
	KT1	0. 02202	0.064	
浮遊粒子状物質	KT2	0. 02203	0.064	日平均値の2%除外値が
	KT3	0. 02305	0.067	
(mg/m^3)	KT4	0.02106	0.060	0.10mg/m ³ 以下
	KT5	0. 02202	0.064	
	KT1	0.00157	_	
水銀	KT2	0.00168	_	
$(\mu \text{ g/m}^3)$	KT3	0.00165	_	0.04μg/m³以下 ^注
(μ g/ III)	KT4	0.00169	_	
	KT5	0.00155	_	
	KT1	0.03111	_	
ダイオキシン類	KT2	0.03314	_	
クイスインン類 (pg-TEQ/m³)	KT3	0.04124	_	0.6pg-TEQ/m³以下
(bg_1cg/m)	KT4	0.02332	_	
	KT5	0.03009	_	

注:「今後の有害大気汚染物質対策のあり方について (第七次答申)」(平成15年 中央環境審議会) に示される指針値

(b) 排出ガスによる1時間値

a) 大気安定度不安定時

大気安定度不安定時の排出ガスによる二酸化硫黄、二酸化窒素、浮遊粒子状物質、塩化水素の寄与濃度予測結果を表 7.1-65に、このうち最大着地濃度出現時における将来濃度予測を表 7.1-66に、風下距離による寄与濃度予測結果を図 7.1-22に示します。

最大着地濃度は、いずれの項目においても大気安定度A、風速1.0m/秒の場合であり、二酸化硫黄が0.0015ppm、二酸化窒素が0.0018ppm、浮遊粒子状物質が0.0015mg/m³、塩化水素が0.0044ppmでした。

表 7.1-65 排出ガスによる大気安定度不安定時の寄与濃度予測結果(1時間値)

風速			寄与濃度(最大	着地濃度地点)		最大着地濃度
(m/秒) 大気安定度	二酸化硫黄 (ppm)	二酸化窒素 (ppm)	浮遊粒子状物質 (mg/m³)	塩化水素 (ppm)	出現風下距離 (m)	
1.0	A	0.0015	0.0018	0.0015	0.0044	610 (620)
1.0	В	0.0010	0.0017	0.0010	0. 0029	1, 260 (1, 410)
0.0	A	0.0012	0.0014	0.0012	0.0035	520 (530)
2.0	В	0.0009	0.0013	0.0009	0. 0026	920 (1, 030)
3. 0	В	0.0008	0.0011	0.0008	0.0024	800 (870)

注:最大着地濃度出現距離の()内は、二酸化窒素の最大着地濃度出現風下距離を示します。

表 7.1-66 排出ガスによる大気安定度不安定時の将来濃度予測結果 (1時間値)

項目	大気 安定度	風速 (m/秒)	最大着地濃度 出現風下距離 (m)	排出ガス 寄与濃度 ①	バックグラ ウンド濃度 ②	将来濃度 ① + ②
二酸化硫黄(ppm)	A	1.0	610	0.0015	0.011	0. 0125
二酸化窒素(ppm)	A	1.0	620	0.0018	0.055	0.0568
浮遊粒子状物質(mg/m³)	A	1.0	610	0.0015	0.098	0. 0995
塩化水素(ppm)	A	1.0	610	0.0044	0.001	0.0054

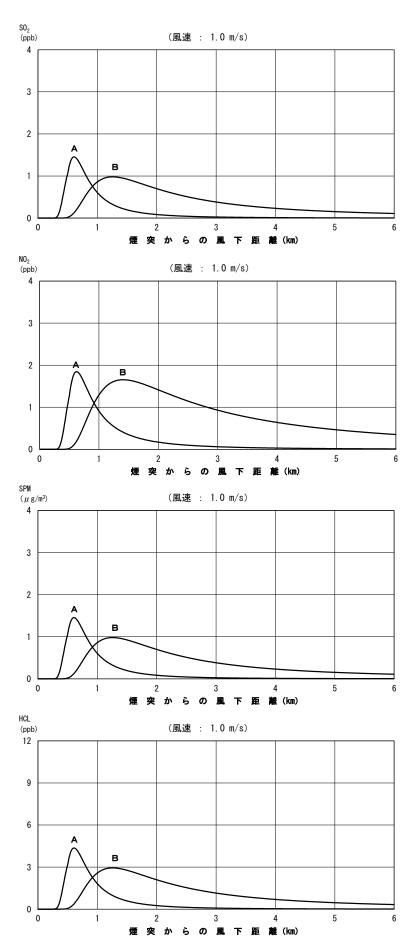


図 7.1-22 排出ガスによる大気安定度不安定時の寄与濃度予測結果 (1時間値、最大着地濃度出現時)

b) 上層逆転層発生時

上層逆転層発生時の排出ガスによる二酸化硫黄、二酸化窒素、浮遊粒子状物質、塩化水素の寄与濃度予測結果を表 7.1-67に、このうち最大着地濃度出現時における将来濃度予測を表 7.1-68に、風下距離による寄与濃度予測結果を図 7.1-23に示します。最大着地濃度は、いずれの項目においても大気安定度A、風速1.0m/秒の場合であり、二酸化硫黄が0.0029ppm、二酸化窒素が0.0037ppm、浮遊粒子状物質が0.0029mg/m³、塩化水素が0.0088ppmでした。

表 7.1-67 排ガスによる上層逆転層発生時の寄与濃度予測結果 (1時間値)

風速			寄与濃度(最大	着地濃度地点)		最大着地濃度
無述 (m/秒)	大気安定度	二酸化硫黄 (ppm)	二酸化窒素 (ppm)	浮遊粒子状物質 (mg/m³)	塩化水素 (ppm)	出現風下距離 (m)
1 0	A	0. 0029	0.0037	0. 0029	0.0088	610 (630)
1.0	В	0.0020	0.0033	0.0020	0.0059	1, 260 (1, 430)
0.0	A	0.0023	0.0028	0.0023	0.0070	520 (540)
2.0	В	0.0018	0.0026	0.0018	0.0053	920 (1, 050)
3.0	В	0.0016	0.0022	0.0016	0.0047	800 (880)

注:最大着地濃度出現距離の()内は、二酸化窒素の最大着地濃度出現風下距離を示します。

表 7.1-68 排ガスによる上層逆転層発生時の将来濃度予測結果 (1時間値)

項目	大気 安定度	風速 (m/秒)	最大着地濃度 出現風下距離 (m)	排出ガス 寄与濃度 ①	バックグラ ウンド濃度 ②	将来濃度 ① + ②
二酸化硫黄(ppm)	A	1.0	610	0.0029	0.011	0. 0139
二酸化窒素(ppm)	A	1. 0	630	0.0037	0.055	0.0587
浮遊粒子状物質(mg/m³)	A	1. 0	610	0.0029	0.098	0. 1009
塩化水素 (ppm)	A	1.0	610	0.0088	0.001	0.0098

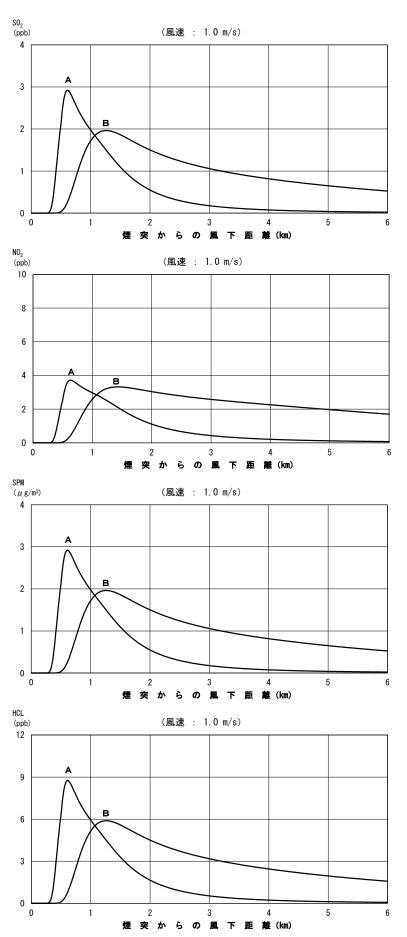


図 7.1-23 排出ガスによる上層逆転層発生時の寄与濃度予測結果 (1時間値、最大着地濃度出現時)

c) 逆転層崩壊時

逆転層崩壊時の排出ガスによる二酸化硫黄、二酸化窒素、浮遊粒子状物質、塩化水素の寄与濃度予測結果を表 7.1-69に、このうち最大着地濃度出現時における将来濃度予測を表 7.1-70に示します。

最大着地濃度は、いずれの項目においても風速1.0m/秒の場合であり、二酸化硫黄が0.0040ppm、二酸化窒素が0.0199ppm、浮遊粒子状物質が0.0040mg/m³、塩化水素が0.0120ppmでした。

表 7.1-69 排出ガスによる逆転層崩壊時の寄与濃度予測結果(1時間値)

国連	風速 寄与濃度(最大着地濃度地点)							
(m/秒)	二酸化硫黄 (ppm)	二酸化窒素 (ppm)	浮遊粒子状物質 (mg/m³)	塩化水素 (ppm)	出現風下距離 (m)			
1.0	0.0040	0.0199	0.0040	0.0120	810			
2.0	0.0029	0.0146	0.0029	0.0088	980			
3.0	0.0022	0.0111	0.0022	0.0067	1, 180			
4.0	0.0018	0.0088	0.0018	0.0053	1, 400			
5. 0	0.0014	0.0072	0.0014	0.0043	1,620			
6. 0	0.0012	0.0060	0.0012	0.0036	1,850			

表 7.1-70 排出ガスによる逆転層崩壊時の将来濃度予測結果(1時間値)

項目	風速 (m/秒)	最大着地濃度 出現風下距離 (m)	排出ガス 寄与濃度 ①	バックグラ ウンド濃度 ②	将来濃度 ① + ②
二酸化硫黄(ppm)	1.0	810	0.0040	0.011	0.0150
二酸化窒素(ppm)	1.0	810	0. 0199	0.055	0. 0749
浮遊粒子状物質(mg/m³)	1. 0	810	0.0040	0.098	0. 1020
塩化水素(ppm)	1. 0	810	0.0120	0.001	0.0130

d) ダウンウォッシュ時

ダウンウォッシュ時の排出ガスによる二酸化硫黄、二酸化窒素、浮遊粒子状物質、塩化水素の寄与濃度予測結果を表 7.1-71に、このうち最大着地濃度出現時における将来濃度予測を表 7.1-72に、風下距離による寄与濃度予測結果を図 7.1-24に示します。

最大着地濃度は、いずれの項目においても大気安定度C、風速18.6m/秒の場合であり、二酸化硫黄が0.0004ppm、二酸化窒素が0.0006ppm、浮遊粒子状物質が0.0004mg/m³、塩化水素が0.0013ppmでした。

表 7.1-71 排ガスによるダウンウォッシュ時の寄与濃度予測結果(1時間値)

風速			寄与濃度(最大	着地濃度地点)		最大着地濃度
(m/秒)	大気安定度	二酸化硫黄	二酸化窒素	浮遊粒子状物質	塩化水素	出現風下距離
		(ppm)	(ppm)	(mg/m³)	(ppm)	(m)
	С	0.0004	0. 0006	0.0004	0.0013	660
18.6	C	0.0004	0.0000	0.0004	0.0013	(740)
18. 0	D	0.0003	0.0005	0.0003	0.0009	1, 340
	D	0.0003	0.0005	0.0003	0.0009	(1,740)

注:最大着地濃度出現距離の()内は、二酸化窒素の最大着地濃度出現風下距離を示します。

表 7.1-72 排ガスによるダウンウォッシュ時の将来濃度予測結果(1時間値)

項目	大気 安定度	風速 (m/秒)	最大着地濃度 出現風下距離 (m)	煙突排ガス 寄与濃度 ①	バックグラ ウンド濃度 ②	将来濃度 ① + ②
二酸化硫黄(ppm)	С	18.6	660	0.0004	0. 011	0.0114
二酸化窒素(ppm)	С	18.6	740	0.0006	0.055	0.0556
浮遊粒子状物質(mg/m³)	С	18.6	660	0.0004	0.098	0.0984
塩化水素(ppm)	С	18.6	660	0.0013	0.001	0.0023

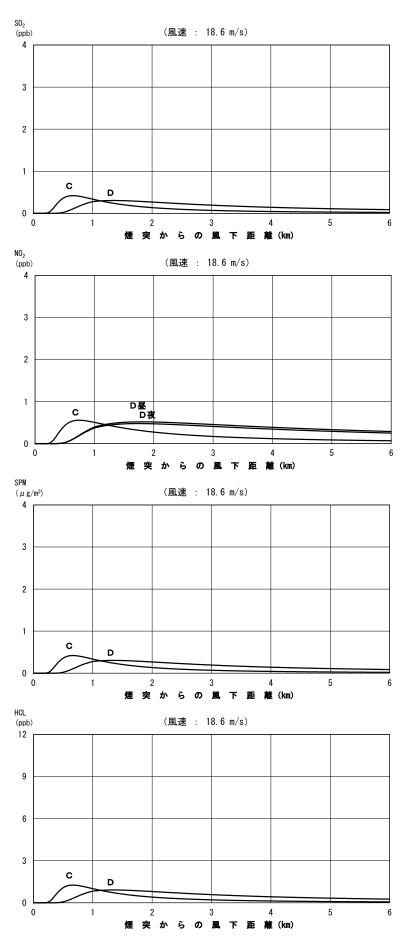


図 7.1-24 排出ガスによるダウンウォッシュ時の寄与濃度予測結果 (1時間値、最大着地濃度出現時)

e) 環境基準等との比較

各ケースの1時間値の予測結果のうち、将来濃度が最大となるものは表 7.1-73に示すとおりです。いずれの物質も、逆転層崩壊時が最大となりました。

最大値は、二酸化硫黄が0.0150ppm、二酸化窒素が0.0749ppm、浮遊粒子状物質が0.1020mg/m³、塩化水素が0.0130ppmとなり、環境基準等を満足するものと予測します。

表 7.1-73 排出ガスによる1時間値の予測結果

	公 /: 176						
区分	ケース 物 質	単位	大気安定度 不安定時	上層逆転層 発生時	逆転層崩壊時	ダウン ウォッシュ時	環境基準等
п	二酸化	ppm	0. 0125 (0. 0015)	0. 0139 (0. 0029)	0. 0150 (0. 0040)	0. 0114 (0. 0004)	1時間値が0.1ppm 以下
最大将来濃度	二酸化 室 素	ppm	0. 0568 (0. 0018)	0. 0587 (0. 0037)	0. 0749 (0. 0199)	0. 0556 (0. 0006)	1時間値が0.1~ 0.2ppm以下 ^{注4}
来濃度	浮遊粒子 状物質	${\rm mg/m^3}$	0. 0995 (0. 0015)	0. 1009 (0. 0029)	0. 1020 (0. 0040)	0. 0984 (0. 0004)	1時間値が 0.20mg/m³以下
及	塩化水素	ppm	0. 0054 (0. 0044)	0. 0098 (0. 0088)	0. 0130 (0. 0120)	0. 0023 (0. 0013)	1時間値が 0.02ppm以下 ^{注5}
出現条件	大 気 安定度	1	A	A	Moderate Inversion	С	_
条件	風速	m/秒	1. 0	1.0	1.0	18.6	_

注1: は全ての予測値の中の最大値を示します。

注2:()内は最大寄与濃度を示します。

注3: バックグラウンド濃度は、二酸化硫黄、二酸化窒素及び浮遊粒子状物質は、事業計画地最寄りの測定局(皆実小学校)における1時間値の最大値(令和2年6月~令和3年5月)とし、塩化水素は、一般環境大気質現地調査結果の最大値としました。

注4:中央公害対策審議会(昭和53年3月22日答申)に示される短期暴露の指針値

注5:「環境庁大気保全局長通達」(昭和52年 環大規第136号)に示される目標環境濃度

6) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・現南工場よりも高度な排ガス処理技術を採用し、有害物質の排出濃度を低減します。
- ・施設の維持管理を適正に行い、可能な限り有害物質の排出濃度を低減します。

7) 評価

施設の稼働に伴う排出ガスの影響について、年平均値に係る予測結果は、最大着地濃度地点で、二酸化硫黄の 2%除外値が 0.003ppm、二酸化窒素の年間 98%値が 0.029ppm、浮遊粒子状物質の 2%除外値が 0.068mg/m³、水銀の年平均値が 0.00184 μ g/m³、ダイオキシン類の年平均値が 0.04140pg-TEQ/m³ となり、環境基準等との整合が図られているものと評価します。1時間値に係る予測結果は、最大値で、二酸化硫黄が 0.0150ppm、二酸化窒素が 0.0749ppm、浮遊粒子状物質が 0.1020 mg/m³、塩化水素が 0.0130ppm となり、環境基準等との整合が図られているものと評価します。排出ガスの排出濃度は、「第 2 章事業の目的及び内容」に示したとおり、法規制値以下の管理値を定めており、大気汚染防止法及びダイオキシン類対策特別措置法に基づく規制基準との整合が図られているものと評価します。

また、現南工場よりも高度な排ガス処理技術を採用し、有害物質の排出濃度を低減する等の環境保全措置を実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減されているものと評価します。

(7) 廃棄物の搬出入に伴う窒素酸化物・浮遊粒子状物質

1) 予測項目

予測項目は、廃棄物運搬車両等の運行に伴う排ガス(窒素酸化物(二酸化窒素)及び浮遊粒子状物質)の影響としました。

2) 予測地域・地点

予測地域は、廃棄物運搬車両等の運行による影響が想定される範囲として、主要運行ルートの道路端から150mとしました。「資材及び機械等の運搬に用いる車両の運行に伴う粉じん等」と同様に、道路沿道大気質の現地調査地点を基本とし、図7.1-8に示した3地点(地点JT1、地点JT2及び地点JT3)としました。また、予測高さは、地上1.5mとしました。

3) 予測時期

予測時期は、廃棄物運搬車両等の運行台数が定常状態となる時期としました。

4) 予測手法

予測は、工事用車両の運行と同様に、二酸化窒素及び浮遊粒子状物質の年平均値を対象 として、「道路環境影響評価の技術手法」に示すプルーム式・パフ式を基本とした大気拡 散式により予測を行いました。

(a) 予測手順

廃棄物運搬車両等の運行に伴う影響に関する予測手順を図 7.1-25に示します。

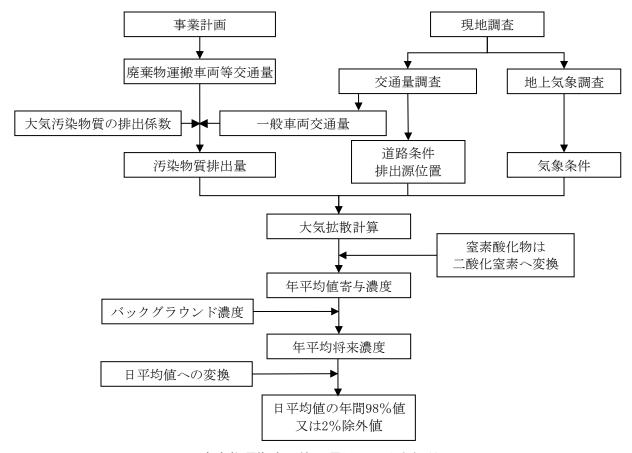


図 7.1-25 廃棄物運搬車両等の運行による大気質の予測手順

(b) 予測式

予測式は、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊 粒子状物質」と同様としました。

5) 予測条件

(a) 排出源の位置及び高さ

排出源の位置及び高さは、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。

(b) 走行速度

走行速度は、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。

(c) 排出係数

予測地点の窒素酸化物及び浮遊粒子状物質の排出係数は、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。なお、排出係数は、供用開始予定年度(令和10(2028)年)をもとに2025年度としました。

(d) 交通量

予測時期における廃棄物運搬車両等の断面交通量を表 7.1-74に示します。

また、予測時期の一般車両交通量は、現況交通量と同様とし、廃棄物運搬車両等が運行する平日の現況交通量を用いました。各地点の現況交通量を表 7.1-75に示します。

表 7.1-74 廃棄物運搬車両等の断面交通量

単位:台/日

			1 1 1 1 1 1 1
予測地点	大型車	小型車	合計
JT1	114	120	234
JT2(側道)	30	120	150
JT2(本線)	134	120	254
JT3	44	120	164

表 7.1-75 現況交通量

単位:台/日

予測地点	点 大型車 小型車		合計
JT1	440	8, 919	9, 359
JT2(側道)	885	11, 032	11, 917
JT2 (本線)	6, 046	44, 109	50, 155
JT3	1,643	20, 366	22, 009

(e) 気象条件

気象条件は、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。

(f) バックグラウンド濃度

バックグラウンド濃度は、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。

(g) 窒素酸化物から二酸化窒素への変換

窒素酸化物濃度から二酸化窒素濃度への変換は、「(4) 資材及び機械等の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。

(h) 年平均値から日平均値の年間98%値又は2%除外値への変換

年平均値から日平均値の年間98%値又は2%除外値への変換は、「(4) 資材及び機械等 の運搬に用いる車両の運行に伴う窒素酸化物・浮遊粒子状物質」と同様としました。

6) 予測結果

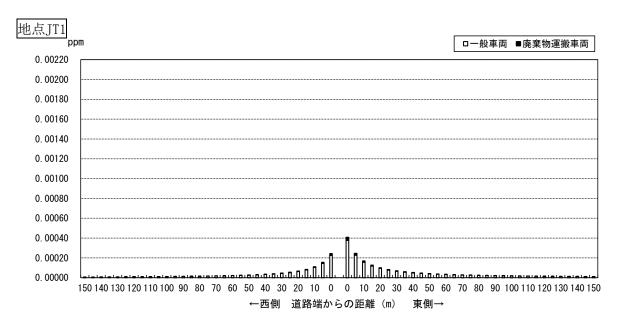
(a) 年平均值

予測結果を表 7.1-76及び図 7.1-26に示します。

二酸化窒素における各予測地点の最大値は、地点JT1が東側の0.01241ppmで寄与率は0.24%、地点JT2が東側の0.01695ppmで寄与率は0.12%、地点JT3が北側の0.01257ppmで寄与率は0.16%でした。

浮遊粒子状物質における各予測地点の最大値は、地点JT1が東側の $0.02203 \, \text{mg/m}^3$ で寄与率は0.00%、地点JT2が東側の $0.02313 \, \text{mg/m}^3$ で寄与率は0.00%、地点JT3が南側、北側ともに $0.02108 \, \text{mg/m}^3$ で寄与率は0.00%でした。

表 7.1-76(1) 廃棄物運搬車両等の運行に伴う二酸化窒素濃度の予測結果(年平均値)


単位:ppm

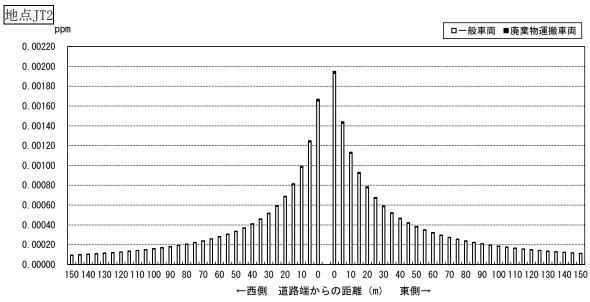

予測地点		廃棄物 運搬車両等 寄与濃度 ①	一般車両 寄与濃度 ②	バックグラ ウンド濃度 ③	将来濃度 (①+②+③)	寄与率 (①/(①+②+③)) ×100
JT1	西側	0. 00002	0. 00023	0.012	0. 01225	0. 16%
	東側	0. 00003	0.00038	0.012	0. 01241	0. 24%
JT2	西側	0. 00002	0. 00165	0.015	0. 01667	0. 12%
	東側	0.00002	0. 00193	0.015	0. 01695	0. 12%
ЈТ3	南側	0. 00002	0. 00151	0.011	0. 01253	0. 16%
	北側	0. 00002	0. 00155	0.011	0. 01257	0. 16%

表 7.1-76(2) 廃棄物運搬車両等の運行に伴う浮遊粒子状物質濃度の予測結果 (年平均値)

単位:mg/m³

予測地点		廃棄物 運搬車両等 寄与濃度 ①	一般車両 寄与濃度 ②	バックグラ ウンド濃度 ③	将来濃度 (①+②+③)	寄与率 (①/(①+②+③)) ×100
JT1	西側	0.00000	0.00002	0.022	0.02202	0.00%
	東側	0.00000	0. 00003	0.022	0. 02203	0.00%
JT2	西側	0.00000	0.00011	0.023	0. 02311	0.00%
	東側	0.00000	0.00013	0.023	0.02313	0.00%
ЈТ3	南側	0.00000	0.00008	0.021	0. 02108	0.00%
	北側	0.00000	0.00008	0.021	0. 02108	0.00%

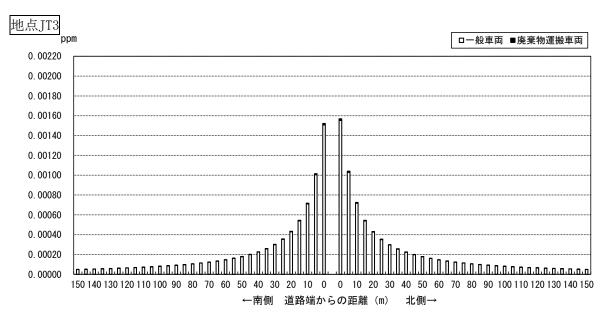
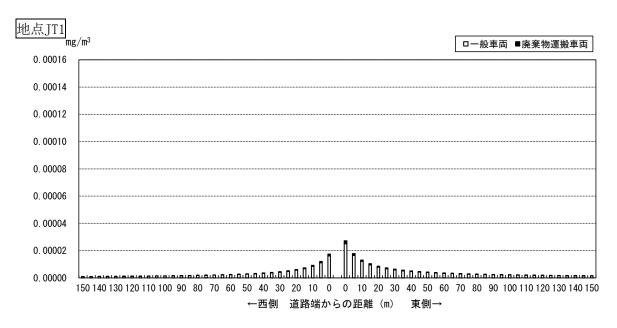
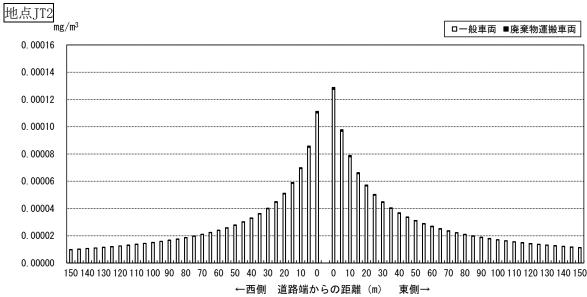




図 7.1-26(1) 廃棄物運搬車両等の運行に伴う二酸化窒素寄与濃度予測結果 (年平均値)

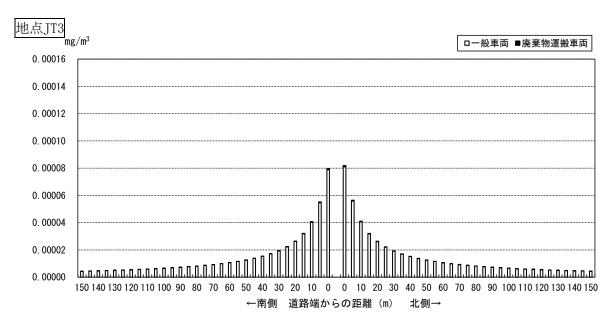


図 7.1-26(2) 廃棄物運搬車両等の運行に伴う浮遊粒子状物質寄与濃度予測結果 (年平均値)

(b) 環境基準との比較

環境基準との比較のため、日平均値の年間98%又は2%除外値への換算を行った結果は、表 7.1-77に示すとおりです。

二酸化窒素における各予測地点の最大値は、地点JT1が西側、東側ともに0.026ppm、地点JT2が西側、東側ともに0.032ppm、地点JT3が南側、北側ともに0.026ppmでした。 浮遊粒子状物質における各予測地点の最大値は、地点JT1が東側の0.054mg/m³、地点JT2が西側、東側ともに0.056mg/m³、地点JT3が南側、北側ともに0.052mg/m³でした。 いずれも、環境基準を満足するものと予測します。

表 7.1-77(1) 廃棄物運搬車両等の運行に係る二酸化窒素予測結果(日平均値の年間98%値)

単位:ppm

				+ IT · bbii	
予測地点		将来	濃度		
		年平均値	日平均値の 年間98%値	環境基準	
TT 1	西側 0.0		0. 026		
JT1	東側	0. 01241	0.026		
JT2	西側	0. 01667	0.032	日平均値の年間98%値が0.04~ 0.06ppmのゾーン内又はそれ以	
J14	東側	0. 01695	0.032		
ЈТ3	南側	0. 01253	0.026		
	北側	0. 01257	0.026		

表 7.1-77(2) 廃棄物運搬車両等の運行に係る浮遊粒子状物質予測結果 (日平均値の2%除外値)

単位: mg/m³

予測地点		将来	濃度	平 虹 ⋅ mg/ m	
		年平均値	日平均値の 2%除外値	環境基準	
TT 1	西側	0. 02202	0.053		
JT1	東側	0. 02203	0.054		
JT2	西側	0. 02311	0.056	日平均値の2%除外値が 0.10mg/m³以下	
	東側	0. 02313	0.056		
JT3	南側	0. 02108	0.052		
	北側	0. 02108	0.052		

7) 環境保全措置

環境への影響を低減するため、以下の環境保全措置を実施します。

【環境保全措置】

- ・ごみの減量化を進め、廃棄物運搬車両等の運行台数を減らします。
- ・廃棄物運搬車両等の運行においては、制限速度の遵守や急発進・急停止等の回避を運 転手に指導します。

8) 評価

廃棄物運搬車両等の運行に伴う排ガスの影響について、二酸化窒素及び浮遊粒子状物質の日平均値の年間 98%又は 2%除外値への換算を行った結果、二酸化窒素における各予測地点の最大値は、地点 JT1 が西側、東側ともに 0.026ppm、地点 JT2 が西側、東側ともに 0.032ppm、地点 JT3 が南側、北側ともに 0.026ppm、浮遊粒子状物質における各予測地点の最大値は、地点 JT1 が東側の 0.054 mg/m³、地点 JT2 が西側、東側ともに 0.056 mg/m³、地点 JT3 が南側、北側ともに 0.052 mg/m³となり、環境基準への整合が図られているものと評価します。

また、ごみの減量化を進め、廃棄物運搬車両等の運行台数を減らす等の環境保全措置を 実施することにより、環境への影響が実行可能な範囲でできる限り回避又は低減されてい るものと評価します。