

第 III 編 手法編(手法と基礎資料) III-1
1 被害想定手法の概要ⅠⅡ-1
(1) 被害想定の実施方針 III-1
ア 地震動予測 III-1
イ 津波浸水想定
ウ 被害想定III-2
2 地震動等の予測
(1) 地震動
ア 地震動予測の概要 III-4
イ 強震断層モデルの設定 III-7
ウ 地盤モデルの設定 III-16
エ 地震動の予測III-18
(2)液状化 III-29
ア 液状化危険度評価
イ 沈下量の算定 III-35
(3) 土砂災害 III-36
ア 急傾斜地崩壊危険箇所の評価手法
イ 地すべり危険箇所の評価手法 III-39
ウ 山腹崩壊危険地区の評価手法 III-40
(4) 津波 III-41
ア 津波浸水想定の概要 III-41
イ 津波断層モデルの設定 III-41
ウ 津波浸水想定III-45
3 被害の想定
(1) 建物被害 III-50
ア 建物の現況 III-50
イ 液状化による建物被害の算定手法 III-51
ウ 揺れによる建物被害の算定手法 III-58
エ 土砂災害による建物被害の算定手法 III-63
オ 津波による建物被害の算定手法III-64
カ 地震火災による建物被害の算定手法
キ 屋外転倒、落下物の発生 III-76
(2)人的被害
ア 人口の現況III-81

目

次

イ	人口データの設定	. III-82
ウ	建物倒壊による人的被害	. III-83
工	土砂災害による人的被害	. III-87
オ	津波による人的被害	. III-88
力	地震火災による人的被害	. III-94
キ	屋内収容物移動・転倒、屋内落下物による人的被害	. III-97
ク	ブロック塀等の倒壊による人的被害	III-101
ケ	屋外落下物による人的被害	III-103
(3)	ライフライン施設被害	III-106
ア	上水道	III-106
イ	下水道	III-112
ウ	電力	III-116
工	通信	III-120
才	ガス	III-124
(4)	交通施設被害	III-127
ア	道路	III-127
イ	鉄軌道	III-128
ウ	港湾	III-130
工	空港	III-132
(5)	生活支障	III-133
ア	避難者	III-133
イ	帰宅困難者	III-134
ウ	物資需要量	III-136
I	医療機能支障	III-137
(6)	災害廃棄物	III-139
ア	災害廃棄物発生量	III-139
(7)	その他の被害	III-142
ア	エレベータ内閉じ込め	III-142
イ	危険物施設	III-145
ウ	ため池の決壊	III-147
工	重要施設	III-149
(8)	経済被害	III-153
ア	資産等の被害	III-155
イ	生産低下による影響	III-165
ウ	交通寸断による影響	III-172
I	波及的被害額	III-176
オ	防災・減災対策の効果の試算	III-177

第111編 手法編(手法と基礎資料)

1 被害想定手法の概要

(1) 被害想定の実施方針

ア 地震動予測

本調査では、想定地震ごとに様々なケースの地震動等の予測を行い、被害が最大となるケースで被害想定を行った。

南海トラフ巨大地震の地震動等については、内閣府の「南海トラフの巨大地震モデル 検討会」が示した「基本ケース」、「陸側ケース」、「東側ケース」、「西側ケース」 の4 つの強震断層モデルと、これを補完するための「経験的手法」及びこれらの震度の 最大値の「重ね合わせ」の内、「重ね合わせ」を除き、本市の人的被害に直結する揺れ による建物全壊棟数が最も多い想定結果となった「陸側ケース」を用いて被害想定を行 った。

なお、揺れによる全壊棟数が同数の場合は、液状化による建物全壊棟数が多くなるケ ースを用いて被害想定を行った。

南海トラフ巨大地震以外の地震では、想定断層の両端に破壊開始点を設定した2ケースの強震断層モデルの内、揺れによる建物全壊棟数が多くなるケースを用いて被害想定 を行った。

イ 津波浸水想定

南海トラフ巨大地震の津波断層モデルは、内閣府(2012a)¹が設定している 11 ケース の津波断層モデルの内、広島市沿岸部における波高が高くなり、浸水面積が大きくなる と想定される次の津波断層モデルケースを選択し、想定対象とした。

30cm 以上浸水深面積が最大となり、本市にとって最大の被害となると想定される津波 断層モデル「ケース1」を選定した。

また、既に明らかとなっている断層等を震源とする地震の内、震源が海域にある次の 2 地震を「瀬戸内海域活断層等による地震」として定義し、想定対象とした。

- ・安芸灘~伊予灘~豊後水道
- ・安芸灘断層群(広島湾-岩国沖断層帯)

¹ 内閣府(2012a):南海トラフの巨大地震モデル検討会.

ウ 被害想定

(7) 被害想定シーン

揺れ、液状化、土砂災害、火災を原因とする建物被害は、全壊棟数、半壊棟数を 250mメッシュ単位で、津波を原因とする場合は10mメッシュ単位で想定した。

人的被害は、死傷者数を小学校区単位で想定した。

地震火災による建物被害及び人的被害は、被害の様相が異なる特徴的な深夜、昼 12 時、夕方 18 時の 3 ケースで被害想定を行い、被害量が最悪となるケースを把握した。

表Ⅲ 1.1 想定シーンと想定される被害の特徴

想定シーン	想定される被害の特徴
冬 深夜 (平均:風速 8m/s 最大:風速11m/s)	 ・多くが自宅で就寝中に被災するため、家屋倒壊による死者が発生する危険性が高く、また津波からの避難が遅れることにもなる。 ・オフィスや繁華街の滞留者や鉄道・道路の利用者が少ない。
夏 12 時 (平均:風速 7m/s) 最大:風速11m/s)	 ・オフィスや繁華街等に多数の滞留者が集中しており、自宅外で被災 する場合が多い。 ・木造建物内滞留人口は、1日の中で最も少ない時間帯であり、老朽 木造住宅の倒壊による死者は冬の深夜と比べて少ない。 ・海水浴客をはじめとする観光客が多く沿岸部等にいる。
冬 18 時 (平均:風速 8m/s) 最大:風速11m/s)	 ・住宅、飲食店などで火気使用が最も多い時間帯で、出火件数が最も 多くなる。 ・オフィスや繁華街周辺のほか、ターミナル駅にも滞留者が多数存在 する。 ・鉄道、道路はほぼ帰宅ラッシュ時に近い状態であり、交通被害によ る人的被害や交通機能支障による影響が大きい。

(イ) 津波に係る被害想定条件

a 構造物(護岸、堤防、防波堤、水門等)の取扱い

震度6弱以上の地域では、堤防に亀裂が発生したり、水門の機能支障が発生する など、海岸構造物が十分に機能しない場合が考えられる(阪神・淡路大震災では、 震度6強以上の地域で約半数、震度6弱の地域で約 1/3 の水門に機能支障が生じ た)。

そこで、震度6強以上の範囲では 1/2、震度6弱の範囲では 1/3 の割合で堤防や 水門等の構造物の機能支障が発生すると仮定し、被害想定を行った。

ただし、地震動による機能支障箇所の想定が難しいことから、面的に分布する建 物、人口の津波による被害は、「構造物が機能する場合」と「構造物が機能しない 場合」の被害量を按分して算定した。

ライフライン施設、交通施設、生活支障、その他の被害は、拠点施設等の被害を 判定する必要があり、按分による手法が適用できないことから、「構造物が機能し ない場合」の浸水区域及び流速を用いて被害想定を行った。 構造物が機能する場合 : 津波が構造物を越えるまでは当該構造物は機能し、越流すると構造物なし(その区間は破堤する)とすることとした。

構造物が機能しない場合:地震発生から3分後に、盛土構造物^{*1}は25%の高さ、 コンクリート構造物^{*2}は0%の高さになる。ただし、地 震発生から3分以内に津波が構造物を越流すると構造 物なし(その区間は破堤する)とすることとした。

※1 盛土構造物:横断図、台帳や航空写真に基づき、盛土構造が確認できるもの※2 コンクリート構造物:盛土構造物以外のもの

b 津波に対する避難行動

津波に対する避難行動の違いは、地域住民の意識によって変化する。

本調査の想定では、内閣府の「南海トラフの巨大地震モデル検討会」が示した東 日本大震災や日本海中部地震等の過去の災害事例を参考とした 4 つの避難パターン の内、本市の過去の津波災害事例の少なさなどを考慮し、早期避難者率が低い場合 (地震発生後すぐに避難する者の割合を 20%、避難するが、すぐには避難しない者 の割合を 50%、切迫避難³³あるいは避難しない者の割合 30%)と設定し、被害想定を 行った。

また、浸水時緊急避難施設が浸水域内に設定されているところでは、浸水時緊急 避難施設による人的被害軽減効果を考慮して被害想定を行った。

※3 切迫避難:揺れがおさまった後、すぐには避難せず、なんらかの行動をしている最中に津 波が迫って来てからとる避難行動

2 地震動等の予測

(1) 地震動

想定地震の規模、震源からの距離、地盤条件等を基に、250m メッシュごとの震度分布を 次の手順で想定した。

ア 地震動予測の概要

震源から射出された地震波は、地殻を伝播していわゆる地震基盤に到達し、地表近く における地盤での増幅現象によって変形され、地表において地震動として観測される。 地震動を予測するにあたっては、それらの特性の組み合わせを次のように表現すること ができる。

地表地震動 = 震源の特性×伝播経路の特性×地盤の応答特性

地震動の大小を左右する震源の特性としては、マグニチュードに代表される地震規模 と震源の位置(範囲、深さ)がまず挙げられる。また、近年の地震研究により、震源断 層の破壊過程(破壊方向や破壊速度など)が空間的な地震動分布に与える影響や、震源 断層の中でも強震動生成域と呼ばれる領域が存在し、特に震源近傍において著しく強い 地震動を発生させる現象などが解明されており、それらの特性を考慮する予測手法が研 究されている。

また、震源から各地までの地中における地震動の伝達経路が、一様な岩盤であると見 なせば、距離に応じた減衰を考慮することにより伝播特性を把握できるが、最近の研究 によって日本の深部地盤構造が明らかになりつつあり、異常震域などの地質的地域特性 を評価することも可能になってきている。

さらに、平野部や山間低地などに代表される軟弱な地盤における地震動の増幅程度が、 地域の揺れに大きく影響するため、各地の地盤特性を詳細に把握した上で、応答特性を 評価することが重要である。

本調査では、これらの特性を考慮できるように、地震動の予測を次の手順で行った。

(7) 断層モデルの設定

国の研究等に基づき、地震規模、破壊過程、強震動生成域などに関する断層パラメ ータを設定した。

(イ) 地盤モデルの設定

市内の浅部地盤(地表から深部地盤表面(Vs600m/s 程度)までの地盤)モデルを、 既往調査結果及びボーリングデータを基に、詳細に設定した。また、工学的基盤面よ り深い深部地盤についても、国の研究成果に基づき深部地盤モデルを設定した。

(ウ) 地震基盤の地震動予測

震源断層の破壊過程や強震動生成域等を考慮してグリーン関数を用いた計算手法に より、地震基盤の地震動予測を行った。

(I) 地表面の地震予測

市内の深部地盤及び浅部地盤を設定し、地盤の応答特性を考慮した計算手法により 地表面の地震動を予測した。

図Ⅲ2.1 地震動予測の概念

なお、南海トラフ巨大地震については、内閣府(2012a)¹の提供データにおいて、 地表面の地震動及び浅部地盤の増幅係数が示されているため、これらを参考として、 広島市の地盤特性を加味した震度予測を行った。

図皿 2.2 (1) 地震動予測の流れ(南海トラフ巨大地震以外の想定地震)

図皿 2.2 (2) 地震動予測の流れ(南海トラフ巨大地震)

イ 強震断層モデルの設定

(ア) 南海トラフ巨大地震

南海トラフ巨大地震については、内閣府の「南海トラフの巨大地震モデル検討会」 が示した「基本ケース」、「陸側ケース」、「東側ケース」、「西側ケース」の4つ の強震断層モデルのうち、広島市の被害が最も大きくなる「陸側ケース」の地震動の 想定を行った。

陸側ケース:中央防災会議(2003)²による東海地震、東南海・南海地震の検討結果 を参考に設定した基本ケースの強震動生成域を、可能性がある範囲で 最も陸域側(プレート境界面の深い側)の場所に設定したもの

設定する陸側ケースの震源位置を図Ⅲ 2.3に、断層パラメータを表Ⅲ 2.1に示す。

図Ⅲ2.3 強震動生成域の設定(陸側ケース)

² 中央防災会議(2003):「東南海, 南海地震等に関する専門調査会」(第16回)報告書.

	而秸(km ²)		110	150							
	亚约広力降下量(MPa)	2.3									
全体 各セグメント 強震動 生成域 勤生成域 SMGA 強震動 生成域 SMGA(1) 強震動 生成域 SMGA(2) 強震動 生成気(2) 強震動 SMGA(2) 強震動 生成成(3) 強震動 生成成(3) 強震成域 SMGA(3) 強震成域 SMGA(3) 音量成域 SMGA(4) 背景領域 そのほか	<u>- ちんちんり量(m)</u> 平均すべり量(m)		7.6								
	十均9~9重(III) 地震モーシント(Nm)		3 4F+22								
		0.0									
	カガナルタ	日向灘域	5.	0 宙海域	眬沞枩岵						
	でファンド石 両時(km ²)	10.053	円/毋×3 53 700	<u>未/時/%</u> 20/110	<u>殿内/弓城</u> 7.999						
	面積(MII) 亚构成力路下景(MDa)	13,033	33,730	23,413	7,000						
各セグメント	平均応力件「重(mi a)	55	4	+ 0.3							
各セグメント 強震動 生成域 SMGA 強震成域 SMGA① 強度成域 SMGA② 強度成域 SMGA②	<u>十均引入り重(III)</u> 地震モーシント(Nm)	1 3E+21	2 0E+22	8 3E+21	1 2E+21						
		4.JL / 21	2.02+22	0.521	8.0						
	而積(km ²)	2 1 1 2	6 1 3 0	3 714	836						
	面很(Kiii) 而结比	2,112	11%	13%	11%						
強震動	画復比 平均すべり景(m)	11.1	18.6	137	71						
生成域	<u>十均すべり重(iii)</u> 地震モーメント(Nm)	9 573E+20	4 7E+21	2 1E+21	2 4E+20						
SMGA	Mw	7.9	9.7 <u></u>	<u>۲.۱۲۲</u> 81	7.5						
全体 各セグメント 強生のメント 強生のスター 強生のスター SMGA 強生のスター 強生のスター SMGA(①) 強生のスター 強生のスター 会体 会体 会して、 会して、	応力パラメータ	24.0	23.7	22.5	24.6						
	応 <u>力</u> (Lm ²)	1 028	1 960	922	419						
没需动	面積(km) 応力パラメータ (MPa)	34.0	46.3	45.0	34.8						
田辰町	<u> 平均すべり景(m)</u>	10.9	20.5	13.7	7 1						
SMGA	<u>139 りま(II)</u> 地震モーメント(Nm)	4 6E+20	1 7E+21	5 2E+20	1 2E+20						
強震動 生成域 SMGA① 強震動 生成域 SMGA②		4.02 7 7	81	3.22+20	7.3						
	而積(km ²)	1 084	1 624	914	417						
必重新	面頂(NIII) 応力パラメータ(MPa)	34.0	46.3	45.0	34.8						
強震動 生成域 SMGA②	<u> 平均すべり量(m)</u>	11.2	18.7	13.6	71						
	<u>139 りま(II)</u> 地震モーメント(Nm)	5 0E+20	1 2E+21	5 1E+20	1 2E+20						
	Mw	77	80	77	7.3						
	而積(km ²)	/./	1614	936	1.6						
改善	広力パラメータ (MPa)		46.3	45.0							
生成域	平均すべり量(m)		18.6	13.8							
全体 各セグメント 強生成ス 酸素成QA 強生成QA(1) 強生成QA(2) 強生成QA(2) 強生のGA(3) 強生のGA(3) 強生のGA(3) 強生のGA(4) 背景領域 そのほか	地震モーメント(Nm)		1.2E+21	5.3E+20							
	Mw		8.0	7.7							
	画積(km²) 110.11 平均応力降下量(MPa) 2.3 平均すべり量(m) 7.6 地震モーメント(Nm) 3.4E+ Mw 9.0 グメント 恒荷(km²) 19.053 53.790 平均応力降下量(MPa) 4 4 平均応力降下量(MPa) 4 4 平均応力降下量(MPa) 4 4 平均市パド量(MPa) 4.84 8.8 画積(km²) 2.012 6.130 市蔵北 11% 11% 11% 成域 亜積(km²) 2.02422 4.7E+21 Mw 8.4 8.8 8 画積(km²) 11.1 18.6 Wagモーメント(Nm) 9.573E+20 4.7E+21 Mw 7.9 8.4 応力パラメータ 24.0 23.7 直積(km²) 10.28 1.960 成域 平均すべり量(m) 10.9 20.5 成域 万メーク 24.0 23.7 直積(km²) 1.028 1.960 成域 平均すべり量(m) 10.9		942								
強震動 生成域 SMGA③ 強震動 生成域	応力パラメータ (MPa)		46.3	45.0							
生成域	平均すべり量(m)		14.2	13.8							
各セグメント 強震成 強度成A 1 強度成A 1 第 6 そのほか	地震モーメント(Nm)		5.4E+20	5.3E+20							
		/									
	面積(km ²)	16,941	47,660	25,705	7,052						
1	応力パラメータ(MPa)	3.7	3.7	3.7	3.7						
各セグメント 強生成 SMGA 強生成GA 強生成GA 金震成A SMGA	平均すべり量(m)	4.8	8.1	5.9	3.1						
	地震モーメント(Nm)	3.4E+21	1.6E+22	6.2E+21	9.1E+20						
	Mw	8.3	8.7	8.5	7.9						
	破壊伝播速度(km/s)	2.7	2.7	2.7	2.7						
そのほか	fmax(Hz)	6	6	6	6						
	剛性率(Nm ²)	4.1E+10	4.1E+10	4.1E+10	4.1E+10						

表Ⅲ 2.1 強震断層モデルのパラメーター覧(陸側ケース)²⁹

(イ) 既に明らかとなっている断層等を震源とする地震

既に明らかとなっている断層等を震源とする地震については、既往の調査、研究結 果を踏まえて断層パラメータを設定した。

震源断層の基本的な諸元は、地震調査研究推進本部(2004)³による長期評価(以下 「長期評価」という。)、独立行政法人防災科学技術研究所(2009)⁴による全国地震 動予測地図作成手法の検討(以下「全国地震動予測地図」という。)に示される値を参 考に設定した。また、各種の断層パラメータについては、地震調査研究推進本部 (2009)⁵による震源断層を特定した地震の強震動予測手法(以下「レシピ」という。) や、松田(1975)⁶、筧(2003)⁷、Fujii and Matsuura (2000)⁸などを参考に設定し た。

断層パラメータとして設定している強震動生成域は、震源となる断層範囲の内、強い地震動を発する領域である。活断層等において強震動生成域の位置を予め推測できる情報があることは稀であり、ここでは全国地震動予測地図及びレシピを参考にして 配置を決定した。

また、震源断層の破壊する方向に向けて強い揺れを呈することが知られており、断 層の破壊開始点の位置及び破壊方向によって地震動の空間的分布が異なることになる。 ここでは、広域的な影響に配慮するため、破壊開始点及び破壊方向を2種類設定する こととし、被害がより大きくなる破壊開始点を採用した。

日向灘及び南西諸島海溝周辺(安芸灘~伊予灘~豊後水道)の地震は、全国地震動 予測地図において震源パラメータが表示されておらず、筧(2003)⁷等を参考として、 次のパラメータを設定した。

断層モデル長さ Lmodel 及び断層モデル幅 Wmodel:全国地震動予測地図において、 想定規模 M7.4 相当の地震として、断層モデル長さ、断層モデル幅が 40km×40km が示 されているため、当該設定を準用した。

破壊開始点及び上端の深さ: 筧(2003) ⁷による芸予地震の破壊開始点の深度 (46km) 及び傾斜角 55[°]、幅 40km から上端深さを 30km とした。

地震モーメント Mo: プレート内の地震に適した佐藤(1989)⁹の式を用いて、地震モ ーメントを算定した。

³ 地震調査研究推進本部(2004):日向灘および南西諸島海溝周辺の地震活動の長期評価について.

⁴ 独立行政法人防災科学技術研究所(2009):「全国地震動予測地図」作成手法の検討.

⁵ 地震調査研究推進本部(2009):震源断層を特定した地震動予測手法.

⁶松田時彦(1975):活断層から発生する地震の規模と周期について、地震、第2輯、第28巻、pp.269-283.

⁷ 筧楽麿(2003):2001 年芸予地震の詳細な震源過程と強震動との関連, 神戸大学都市安全研究センター研究報告、No. 7、pp.195-202. ⁸ Fujii and Matsuura(2000): Regional difference in scaling laws for large earthquakes and its tectonic implication, Pure Appl. Geophys.、 157、pp.2283-2302.

⁹佐藤良輔(1989):日本の地震断層パラメター・ハンドブック、鹿島出版会.

佐藤 (1989)⁹の式 *LogMo* = 1.5 *M* +9.2

日向灘及び南西諸島海溝周辺(安芸灘~伊予灘~豊後水道)の地震で採用

武村(1990)¹⁰の式 *logMo* = 1.17 *M* + 10.72

地殻内の地震で採用(レシピによる式)

設定した想定地震の断層パラメータを表Ⅲ 2.2に示した。また、図Ⅲ 2.4に震源断層における強震動生成域や破壊開始点の配置状況を示した。

¹⁰ 武村雅之(1990):日本列島およびその周辺に起こる浅発地震のマグニチュードと地震モーメントの関係、地震、第2輯、第43巻、 pp.257-265.

$\pm \pi \circ \circ \langle a \rangle$					曲後してそい
衣皿 Z.Z (1)	町層ハフメーク	(日回灘及ひ用四	1皕岛冲海向辺(女	、云灘~伊方灘~	*豈依水退)

		項目	値		設定方法
	活断層	長さL	34.7	km	松田 (1975) の式 logL=0.6M-2.9 により算定
	マグニ	チュードM	7.4		長期評価による推定地震規模M6.7~7.4の最大値を採用
	傾斜角	δ	55	0	全国地震動予測地図による西下がり55度を採用
	すべり	角 γ	180	0	全国地震動予測地図による南北走向を採用
	上端深	さ	30	km	筧 (2003) による破壊開始点深さ約46kmから傾斜角δ及び断層モデル幅Wから算定 上端深さ⇒46-cos55°×40/2
上 祖	断層モ	デル長さLmodel	40	km	断層モデルメッシュサイズ
的	断層モ	デル幅Wmodel	40	km	断層モデルメッシュサイズ
ド	断層モ	デル面積Smodel	1600	km^2	$Smodel=Lmodel \times Wmodel$
ラ	地震モ	ーメントMo	2.00E+20	Nm	logMo=1.5M+9.2
×	モーメ	ントマグニチュードMw	7.5		Mw=(logMo-9.1)/1.5
1	断層モ	デルの等価半径R	22.6	km	
タ	静的応	力降下量Δσ	7.6	MPa	$\Delta \sigma = 7/16 \text{Mo/R}^3$
	地震発	生層の密度 ρ	2700.0	kg/m^3	
	S波速度	ξβ	3.40	km/s	
	剛性率	μ	3.12E+10	N/m^2	$\mu = \rho \beta^2$
	平均す	べり量Dmodel	4.0	m	$Mo/(\mu Smodel)$
	短周期	レベルA	3.10E+19	Nm/s^2	$A=2.46 \cdot 10^{10} \times (M_0 \times 10^7)^{1/3}$
	強震動	生成域個数	2	1111/15	112:10 10 (10)(10)
	全	面積Sa	352.0	km ²	Sa=0, 22×S
	、強	盖供 ³³ 等価半径r	10.6	km	
	成震	平均すべり 量Da	8.0	m	$Da = \gamma D \cdot Dmodel$, $\gamma D = 2, 0$
	域動	実効応力σa	50.6	MPa	$g = \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2}} \frac{1}{2} 1$
	生	地電モーメントMoa	8 78F+19	Nm	$M_{0a} = \mu D_{a} S_{a}$
		^{- 油波 C} / V / Mod 面積Sa1	234 7	1cm ²	Sa1=Sa
	強	监视001 笙価平区r1	201.1	lem	$(1 - (0, 1/2))^{1/2}$
	震	守屾十住II 效伍业汉以 1	0.0	KIII	$r_{1} = (Sa_{1}/\pi)$
	動	守Ш十住比γΙ 亚均ナベル垦D-1	0.0		$\gamma 1 - r1/r$
	生	半均りへり里Dal	0.9	III MD -	$\text{Dal}=(\gamma 1/\Sigma \gamma 1^{-}) \cdot \text{Da}$
微	成	夫効応力でal 地電エッスン/LMaal	50.0	MPa	
視	域	地長モーアン下Moal モーシントフがーチョート、Mural	0.49E+19 7 1	INII	
的	Û	t /v /v / ニ/ユ / Miwai 計管田石 諸	224.0	12	断層エデルメッシュサイブ
パ		可	117.0	KM 1 2	例層にノルメリンエリイス
ラ	強	山根Sa2	117.3	km ⁻	1/2
メ	震	等価半径r2	6.1	km	$r^{2}=(Sa^{2}/\pi)^{1/2}$
	動	等価半径比 γ 2	0.6		$\gamma 2 = r2/r$
4	生	平均すべり重Da2 中均すべり重Da2	6.9	m	$Da2=(\gamma 2/\Sigma \gamma 1^{\circ}) \cdot Da$
	成	美効応刀σa2	50.6	MPa	$\sigma a 2 = \sigma a$
	域	地震セーメントMoa2	2.54E+19		
	(2)	1、ハアドゲー/エ下 MWa2 1. 答田志存	120.0	1 2	
		可异用凹傾 五穂cl	120.0	km ⁻	例暦モノルスツシュリイス Sh=Smadal Sa
		回復SD 亚均子ごり早DL	1240.0	km	SD-SIIIOUE1-SA
	背	十切り ^ハ リ里DD 断層アスペカトレ	2.9	111	μ = MOD/(μ = SD)
	景	皆にはしたいである。	1.0	km	
	領	日,示顾(3,~)個"0 宝动広力。h	7 1	MPa	$a = (Db/Wb) \cdot (\int - \langle D a \rangle \cdot n \cdot \nabla \cdot n i^3 \cdot a a$
	域	スパパレノフロロ 地震モーメントMah	1 12E+20	Nm	$0 D - (DD/WD) \cdot (\sqrt{\pi/Da}) \cdot f \cdot 2 \gamma f \cdot \sigma a$ $Mob=Mo=Moa$
		地辰モニアノ下MOD 卦質田孟捷	1.12E#20	1 2	MOD-MO MOd 断屈エデルイッシュサイブ
	1	可 异 用 刞 惧	1200.0	KM	四川官 エノ ルノ ツン ユリイ ヘ

図皿 2.4 (1) 断層モデル:日向灘及び南西諸島海溝周辺(安芸灘~伊予灘~豊後水道)

表 エ 2.2 (2) 断層パラメータ:五日市断層帯(五日市断層)

		項目	値		設定方法
	活断層	長さL	20	km	長期評価に基づき設定
	マグニ	チュードM	7.0		長期評価による推定地震規模M7.0程度を参考に設定
	佰剑岛	2	00	0	長期評価によるほぼ高角度(西傾斜)(地表付近)を
	闽州円	0	50		参考に設定
	すべり	<u>角 γ</u>	180	0	長期評価による右横ずれから設定
巨	上端深	5	2	km	全国地震動予測地図を参考に設定
視	断層モ	アル長さLmodel ゴッ塩w トト	22	km	断層モテルメッシュサイス
的	断層モ	ブル幅Wmodel ゴル五種c トト	18	KM . 2	
パ	町唐七	アル面積Smodel	396	<u>km</u> ²	Smodel=Lmodel × Wmodel
ラ	地長七	ーメントMo	8.17E+18	Nm	$\log Mo = 1.1/M + 10.72$
×	モニノ	ントマクーチュートMW デルの笙価半径P	0.0	km	MW-(10gM0-9.1)/1.5
 7	<u>即</u> 静的 広		2 5	кш MPo	$\Lambda = -7/1 c W_{\rm c} / p^3$
2			2. 0	M1 a	$\Delta \sigma - t/10$ MO/ K
	地長先	注 l の 省 及 ρ	2700.0	kg/m°	
	5 仮 速 彦	ξ β	3.40	KM/S	a ²
	剛性学	μ 。 h 島 Dura da l	3. 12E+10	N/m ⁻	$\mu = \rho \beta^{2}$
	平均9	へり <u>車Dmodel</u>	1.075+10	Ш м. / 2	$MO/(\mu \text{Smodel})$
******	芯同労		1.07E+19	Nm/s²	A=2.46 • 10 ¹⁰ × (Mo×10 ¹) ¹⁷
	${}$	リノイ 回致 声音c。	1 	1 2	地長況保より 2 2
	全	山 恨 こる	58.9	km~	$Sa = \pi r^2$
	成靈	寺恤千佺r 玉佐入 348 星8	4.3	KM	$r=7\pi/4 \cdot Mo/(A \cdot R) \cdot \beta^2$
	域嚴	<u>半均すべり量Da</u>	1.3	m	$Da = \gamma D \cdot Dmodel, \gamma D = 2.0$
	当生	美郊応力σa	17.0	MPa	$\sigma a = \Delta \sigma a = 7/16 \cdot Mo/(r^2 \cdot R)$
	生	地震モーメントMoa	2. 43E+18	Nm	Moa= μ DaSa
	'''	面積Sal	58.9	km ²	Sal=Sa
	震	等価半径r1	4.3	km	$r1=(Sa1/\pi)^{1/2}$
	動	等価半径比 y 1	1.0		γ 1=r1/r
	生	平均すべり量Da1	1.3	m	$Da1=(\gamma 1/\Sigma \gamma i^3) \cdot Da$
微	成	実効応力σal	17.0	MPa	
視	域	アスペリティMoal	2. 43E+18	Nm	
的	1	ノスペリティ MWal 計算田玉珪	6.2	1 2	
パ		計 昇 用 山 惧 プ は 。 。	60.0	km ²	阿唐モブルメッシュリイス
ラ	強	面積Sa2	0.0	km²	
メ	震	等価半径r2	0.0	km	$r^{2}=(Sa^{2}/\pi)^{1/2}$
	動	等価半径比 y 2	0.0		$\gamma 2 = r2/r$
9	生	半均すべり量Da2	0.0	m 	$Da2=(\gamma 2/\Sigma \gamma i^3) \cdot Da$
	成	<u>実効応力σa2</u>	0.0	MPa	σ a2= σ a
	域	$T \land \neg \neg \neg \neg Moa2$	0.00E+00		
	2	ノ <u>スペリノイMWa2</u> 斗笛田五珪	0.0	1 2	
		計 昇 用 山 惧 て す cu	0.0	km ⁻	
		田楨Sb	337.1	<u>km</u> "	Sb=Smode1-Sa
	背	半均すべり重Db 断屋マスペタール	0.5	m	$Db=Mob/(\mu \cdot Sb)$
	景	四周ノヘンクト氏 	1. Z 17	lzm.	
	領	日 泉 映 戦 り 1個 10 宝 劫 広 力 _{の ト}	11 20	мРо	$h = (Dh/Wh) \cdot (\int - \langle D_n \rangle \cdot \dots \cdot \sum : i^3 \cdot \dots \cdot i^3$
	域	スカルンフロロ 地電エーマントMab	5.2 5.74E±10	nii a Nm	$\frac{\partial D}{\partial D} = \frac{\partial D}{\partial V} \frac{\partial V}{\partial D} \cdot \frac{\partial V}{\partial V} \frac{\partial V}{\partial D} + \frac{\partial V}{\partial D} \frac{\partial V}{\partial V} \frac{\partial V}{\partial D} + \frac{\partial V}{\partial D} + \frac{\partial V}{\partial D} \frac{\partial V}{\partial D} + \frac{\partial V}{\partial D} + \frac{\partial V}{\partial D} \frac{\partial V}{\partial D} + \frac{\partial V}{\partial D$
		料質田 而 積	336 0	12	mob-mo moa 断層チデルメッシュサイズ
	1		000.0	3 N III	

北から破壊

_						
				×		

図皿 2.4(2) 断層モデル:五日市断層帯(五日市断層)

表皿 2.2 (3) 断層パラメータ:五日市断層帯(己斐-広島西縁断層帯: M6.5)

		項目	値		設定方法
	活断層	長さL	10	km	長期評価に基づき設定
	マグニ	チュードM	6.5		長期評価による推定地震規模M6.5程度を参考に設定
	傾斜角	δ	90	0	長期評価によるほぼ垂直(地表付近)を参考に設定
	すべり	角 γ	180	0	長期評価による右横ずれから設定
_	上端深	2	2	km	全国地震動予測地図を参考に設定
巨	断層モ	デル長さLmodel	12	km	断層モデルメッシュサイズ
祝	断層モ	デル幅Wmodel	12	km	断層モデルメッシュサイズ
₽Ŋ	断層モ	デル面積Smodel	144	km ²	Smodel=Lmodel × Wmodel
ハ ラ	地震モ	ーメントMo	2.11E+18	Nm	logMo=1.17M+10.72
*	モーメ	ントマクニチュードMw	6.2	1	Mw=(logMo-9.1)/1.5
1	<u> </u>	<u> テルの等価半径K</u>	6.8	km	
4	静的心	刀降下重 $\Delta \sigma$	3.0	MPa	$\Delta \sigma = 7/16 Mo/R^3$
ĺ.	地震発	生層の密度 ρ	2700.0	kg/m³	
	S波速度	ξβ	3.40	km/s	
	剛性率	μ	3.12E+10	N/m^2	$\mu = \rho \beta^2$
	平均す	べり量Dmodel	0.5	m	$Mo/(\mu Smodel)$
	短周期	レベルA	6.80E+18	Nm/s^2	A=2. 46 \cdot 10 ¹⁰ × (Mo × 10 ⁷) ^{1/3}
	強震動	生成域個数	1		地震規模より
	全	面積Sa	26.7	km^2	$Sa = \pi r^2$
	成強	等価半径r	2.9	km	$r=7 \pi / 4 \cdot Mo / (A \cdot R) \cdot \beta^2$
	城震	平均すべり量Da	0.9	m	$Da=\gamma D \cdot Dmodel, \gamma D=2.0$
	動	実効応力σa	16.1	MPa	$\sigma a = \Delta \sigma a = 7/16 \cdot Mo/(r^2 \cdot R)$
	生	地震モーメントMoa	7.85E+17	Nm	Moa= μ DaSa
	-14	面積Sa1	26.7	km^2	Sa1=Sa
	短示	等価半径r1	2.9	km	$r1=(Sa1/\pi)^{1/2}$
	辰	等価半径比 y 1	1.0		γ1=r1/r
	助仕	平均すべり量Da1	0.9	m	$Da1=(\gamma 1/\Sigma \gamma i^3) \cdot Da$
44	山	実効応力σal	16.1	MPa	
微如	域	地震モーメントMoal	7.85E+17	Nm	
倪	(Î)	モーメントマク゛ニチュート Mwa1	5.9		
цл ЦЛ	0	計算用面積	24.0	km^2	断層モデルメッシュサイズ
ラ	7/2	面積Sa2	0.0	km^2	
*	強	等価半径r2	0.0	km	$r^{2}=(Sa^{2}/\pi)^{1/2}$
ĺ.	晨	等価半径比 y 2	0.0		$\gamma 2 = r2/r$
タ	助仕	平均すべり量Da2	0.0	m	$Da2=(\gamma 2/\Sigma \gamma i^3) \cdot Da$
	正	実効応力σa2	0.0	MPa	$\sigma a 2 = \sigma a$
	城	地震モーメントMoa2	0.00E+00		
	2	モーメントマク゛ニチュート Mwa2	0.0		
	<u> </u>	計算用面積	0.0	km^2	断層モデルメッシュサイズ
		面積Sb	117.3	km^2	Sb=Smode1-Sa
	ㅋヒ	平均すべり量Db	0.4	m	$Db=Mob/(\mu \cdot Sb)$
	育星	断層アスペクト比	1.0		
	「「「「「」」「「」」「「」」」」。	背景領域の幅Wb	11	km	
	城	実効応力σb	3.0	MPa	σ b=(Db/Wb) • ($\sqrt{\pi}$ /Da) • r • $\Sigma \gamma$ i ³ • σ a
	-33	地震モーメントMob	1.33E+18	Nm	Mob=Mo-Moa
		計算用面積	120.0	km^2	断層モデルメッシュサイズ

北から破壊

図Ⅲ 2.4 (3) 断層モデル:五日市断層帯(己斐-広島西縁断層帯: M6.5)

表 エ 2.2 (4) 断層パラメータ: 岩国断層帯(岩国断層帯)

活断層長さL 44 km 長期評価に基づき設定 マグニチュードM 7.6 長期評価による推定地震規模M7.6程度を参 傾斜角δ 90 長期評価による高角度,北西傾斜(地表付設定 すべり角γ 180 長期評価による右横ずれから設定 上端深さ 2 km 全国地震動予測地図を参考に設定	考に設定 「近)を参考に
マグニチュードM 7.6 長期評価による推定地震規模M7.6程度を参 傾斜角δ 90 長期評価による高角度,北西傾斜(地表付設定 すべり角γ 180 長期評価による右横ずれから設定 上端深さ 2 km 全国地震動予測地図を参考に設定	考に設定 「近)を参考に
何斜角 δ 90 90	・近)を参考に
すべり角γ 180° 長期評価による右横ずれから設定 上端深さ 2 km 全国地震動予測地図を参考に設定	
日 上端深さ 2 km 全国地震動予測地図を参考に設定	
は 胡子をデル長さLmodel 46 km 断層モデルメッシュサイズ	
的 断層モデル幅Wmodel 18 km 断層モデルメッシュサイズ	
ア、断層モデル面積Smodel 828 km ² Smodel=Lmodel×Wmodel	
ラ 地震モーメントMo 3.80E+19 Nm logMo=1.17M+10.72	
$\chi = \frac{1}{\sqrt{2}} \frac{1}{$	
タ 静的応力降下重Δ σ 3.9 MPa $\Delta \sigma = 7/16 Mo/R^{\circ}$	
地震発生層の密度 ρ 2700.0 $ kg/m^{\circ} $	
S波速度β 3.40 km/s	
剛性率μ 3.12E+10 N/m ² $\mu = \rho \beta^{2}$	
平均 9 个 9 里Dmodel 1.3 m MO/ (μ Smodel)	
芯同別 V [×] /VA I. (OC ⁺ 19 Nm/s A=2.46 · 10 × (Mo×10)) 強雪動化比述個粉 9 地雪坦塔上的	
加展期生成域画数 2 地展規模より Λ π fi s_2 218 0 1 m^2 $c_{r=-r^2}$	
王 面積5a 210.3 Km Sa- π F 論 傑無半径n 8.2 lim $r=7$ /4 M / (A D) 0^2	
\vec{R}	
$\[\] \] \[\] \] \] \] \] \] \] \] \] \] \] \] \] $	
$\pm \frac{1}{4}$	
$\overline{\text{mf}}_{2.012}^{1.012}$ $\overline{\text{m}}_{2.012}^{2.012}$ $\overline{\text{m}}_{2.012}$	
強 鉴 $(x_1, y_2)^{1/2}$ 3. 11. 11. 11. 11. 11. 11. 11. 11. 11.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
動 The Table Tab	
\pm	
微 城 地震モーメントMoa1 1.48E+19 Nm	
$ \begin{array}{c} \mathcal{R} \\ \mathcal{O} \end{array} \overline{ (1)} \overline{ t- \lambda \nu \nu \nu \tau } \tilde{ z + 1 - \nu } \\ \overline{ Mwa1} \qquad \qquad 6.7 \end{array} $	
¹¹ 計算用面積 140.0 km ² 断層モデルメッシュサイズ	
ラ 面積Sa2 73.0 km^2 Sa2=Sa*(1/3)	
メ 二 第二 等価半径r2 4.8 km $r2=(Sa2/\pi)^{1/2}$	
一 一 ● 動 等価半径比γ2 0.6 γ 2=r2/r	
タ 本 平均すべり量Da2 2.6 m Da2=($\gamma 2/\Sigma \gamma i^3$)・Da	
域 地震モーメントMoa2 5.82E+18	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
計 昇 用 面 積 80.0 km ² 断 増 セ ア ル メッシュ ザ イ ス 7.000	
田積Sb 609.1 km ⁴ Sb=Smode1-Sa	
背 半均 $9 \land 9$ $10 = 0.9$ $10 = $	
3 2.0 より 2.0 2.0 15 km	
頃 国家 (大阪) 10 Am 実効応力 σ b 3.3 MPa σ b=(Db/Wb) • (「 σ /Da) • r • Σ v i^3 • σ b	
坂 <u> 水///////////////////////////////////</u>	
計算用面積 608.0 km ² 断層モデルメッシュサイズ	

東から破壊

図Ⅲ 2.4 (4) 断層モデル:岩国断層帯(岩国断層帯)

表 🗉 2.2 (5) 断層パラメータ:安芸灘断層群(広島湾-岩国沖断層帯)

		項目	値		設定方法
	活断層	長さL	37	km	長期評価に基づき設定
	マグニ	チュードM	7.4		長期評価による推定地震規模M7.4程度を参考に設定
	傾斜角	δ	90	0	長期評価では不明のため垂直と仮定
	すべり	角 γ	180	0	長期評価による右横ずれから設定
	上端深	さ	2	km	全国地震動予測地図を参考に設定
巨	断層モ	デル長さLmodel	38	km	断層モデルメッシュサイズ
視	断層モ	デル幅Wmodel	18	km	断層モデルメッシュサイズ
的	断層モ	デル面積Smodel	684	km^2	Smodel=Lmodel×Wmodel
パー	地震モ	ーメントMo	2.71E+19	Nm	logMo=1.17M+10.72
フ	モーメ	ントマグニチュードMw	6.9		Mw=(logMo-9.1)/1.5
メ	断層モ	デルの等価半径R	14.8	km	
	静的応	力降下量Δσ	3.7	MPa	$\Delta \sigma = 7/16 \text{Mo/R}^3$
7	地震発	生層の密度 ρ	2700.0	kg/m^3	
	S波速度	£β	3.40	km/s	
	剛性率	μ	3.12E+10	N/m^2	$\mu = \rho \beta^2$
	平均す	べり量Dmodel	1.3	m	$Mo/(\mu Smodel)$
	短周期	レベルA	1.59E+19	Nm/s^2	A=2. 46 • $10^{10} \times (M_0 \times 10^7)^{1/3}$
	強震動	生成域個数	2	1 (11) 10	地震規模より
	全	面積Sa	168.9	km ²	$Sa = \pi r^2$
	、強	等価半径r	7 3	km	$r=7 \pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$
	成震		2.5	m	$Da = \gamma D \cdot Dmodel \gamma D = 2 0$
	域動	宝劲広力 g a	14 9	MPa	$p_{a} = \frac{1}{2} \frac{1}$
	生	火が心力でa 地震モーメントMag	1 3/F+10	Nm	$0 a - \Delta 0 a - 7/10 \cdot MO/(1 \cdot K)$
		応展で「パン」mod 両巷Sal	1.04L+15	1 ml	$S_{21}=S_{24}(2/3)$
	強	举届业汉和	6.0	Kill Irm	$\frac{1}{(2,1)} \frac{1}{2}$
	震	守屾十住11 竺仁平仅比,1	0.0	KIII	$r_{1} = (5a_{1}/\pi)$
	動	寺仙十住に γ Ι	0.8		$\gamma 1 - r 1/r$
	生	平均9个り重Dal 安劫広去 1	2.8	m	$Dal=(\gamma l/\Sigma \gamma l^{\circ}) \cdot Da$
微	成	美効応力 σ al	14.9	MPa	
視	域	地長モーメントMoal	9.89E+18	INM	
的	(1)	t-//ド/ ー/ュート MWal 社営田声待	120.0	1 2	
パ		司 异/T 田 惧 〒1ま~~	120.0	km	
ラ	品	面積Sa2	56.3	km~	Sa2=Sa*(1/3)
メ	震	等価半径r2	4.2	km	$r^{2}=(Sa^{2}/\pi)^{1/2}$
	動	等価半径比γ2	0.6		$\gamma 2 = r2/r$
タ	生	半均すべり量Da2	2.2	m	$Da2=(\gamma 2/\Sigma \gamma i^{3}) \cdot Da$
	成	実効応力 σ a2	14.9	MPa	σ a2= σ a
	域	地震モーメントMoa2	3.87E+18		
	2	モーメントマク ニチュート Mwa2	6.3	2	
		計算用面積	48.0	km²	断層モテルメッシュサイス
		面積Sb	515.1	km^2	Sb=Smodel-Sa
	背	平均すべり量Db	0.9	m	$Db=Mob/(\mu \cdot Sb)$
	暑	断層アスペクト比	2.1		
	領	背景領域の幅Wb	16	km	
	域	美効応力σb	3.1	MPa	$\sigma b = (Db/Wb) \cdot (\sqrt{\pi/Da}) \cdot r \cdot \Sigma \gamma i^{\circ} \cdot \sigma a$
		地震モーメントMob	1.37E+19	Nm	Mob=Mo-Moa
		計鼻用面積	516.0	km∠	断増モアルメッシュサイス

北から破壊

		1							
						2			
	\star								

図Ⅲ 2.4 (5) 断層モデル:安芸灘断層群(広島湾ー岩国沖断層帯)

ウ 地盤モデルの設定

(ア) 深部地盤モデル

「全国1次地下構造モデル(暫定版)」¹¹を用いて深部地盤での地震動予測を行った。

図Ⅲ2.5 深部地盤(深部地盤深度)

(イ) 浅部地盤モデルの作成

a 浅部地盤モデル

浅部地盤とは、地表から深部地盤面(Vs600m/s 程度)までの地盤を指し、ボーリングなどの地質情報が得られやすいため、詳細なモデル設定が可能である。

本調査では、浅部地盤モデルとして、前回調査(広島市(2007a)¹²)で用いた 500m メッシュ地盤モデルを基に 250m メッシュに細分し、さらに旧版地形図、新た に収集したボーリングデータ等を参考として、33 タイプの地盤に再区分した。

11防災科学技術研究所(2009):全国1次地下構造モデル(暫定版).

¹² 広島市(2007a):広島市地震被害想定調査報告書.

b 浅部地盤の情報

地盤モデルは、33 のタイプ別に、層構造として深度、層厚、地層区分、N値、単位体積重量(tf/m³)、S波伝播速度(m/s)の属性を整理したものである。

- 深度 : 当該層の上面深度(m)
- 層厚 : 当該層の厚さ(m)
- 地層区分 : 沖積シルト、沖積シルト砂、沖積シルト質砂等の区分
- N値 : 地盤調査(標準貫入試験)において、重さ 63.5kg のハンマーを 75cm の高さから自由落下させ、サンプラーを 30cm 貫入させるの に要した打撃回数であり、地盤の固さを知るための重要な数値で ある。硬い地盤は、おもりの落下回数が多く、逆に軟らかい地盤 は、おもりの落下回数が少なくなる。
- S波伝播速度:弾性波速度の一つで、物体内部を伝わる S 波(横波、せん断波)の 伝播速度。弾性波速度は物体の固有の速度で、P 波(縦波、粗密 度)速度と共に、地盤の動的性質を知る上での基本的定数となる。

表Ⅲ 2.3 浅部地盤モデルの例

٦

地盤タイプ		14				
	-					
深度	層厚	地層区分	N値	単位体積重量	S波伝播速度	
(m)	(m)			(tf/m³)	(m/s)	
3	3	沖積砂	8	1.8	126	
7	4	洪積砂	22	2.0	200	
12	5	洪積シルト粘土	28	1.7	273	
18	6	洪積砂	43	2.0	256	
		基盤	50	2.5	700	

図Ⅲ 2.6 浅部地盤

エ 地震動の予測

Γ

(7) 地震基盤の地震動予測

既に明らかとなっている断層等を震源とする地震の地震基盤の地震動は、統計的グ リーン関数を用いて強震動を予測する原田ら(1995)¹³、大角ら(1998)¹⁴の手法を用 いて予測した。

¹³原田隆典・田中剛・田村好文(1995):震源特性を考慮した地震動のシミュレーションの方法、土木学会論文集、No.507、Ⅰ-30、

a グリーン関数法の特徴

グリーン関数法では、図Ⅲ 2.7に示すように、発生する地震の規模によって震源 断層を小さい領域(小断層:幅ΔW、長さΔL)に分割し、それぞれの小断層から発 する小地震波を破壊の進行に要する時間と観測点までの距離を考慮して重ね合わせ ることにより、大断層(幅W、長さL)の大地震波を合成する。

この方法により、震源の破壊方向に向けて強震動となる地域が現れる現象や、強 震動生成域の近傍で、特に強い地震動が現れる現象などを表現することができるた め、地震による揺れの平面的分布が実現象に近い状態として計算されるのが特徴で ある。

図 II 2.7 統計的グリーン関数(原田ら(1995)¹³、大角ら(1998)¹⁴の手法)の計算

b グリーン関数法による地震動の計算方法

小地震波の計算

グリーン関数法による地震動(振幅スペクトル)の算定式及び各パラメータは次 のとおりである。

まず、対象とする震源断層面を小断層(ここでは 2km メッシュ)に分割し、小断層ごとに ω^{-2} 則を満たす次式により振幅スペクトル | $A(\omega)$ |を求める。

$$|A(\omega)| = CA_{s}(\omega)A_{D}(\omega) \tag{1}$$

ここで、C、AS(ω)、AD(ω)はそれぞれ振幅数、震源スペクトル、地震波の減衰特性を現す係数で、次の各式となる。

pp.209-217.

¹⁴ 大角恒雄・原田隆典・泉谷恭男(1998): 確率論的グリーン関数を用いた強震動の波形合成法とその検証例による震源パラメータの考察、土木学会応用力学論文集、Vol.1、pp.595-606.

$$C = \frac{R(\theta, \varphi)FV}{4\pi\rho C_s^{3}}$$
⁽²⁾

 $R(\theta, \phi)$ は地震波の放射パターンに対する補正係数、Fは自由表面の影響による 波動の増幅補正係数、Vは 2 方向の水平成分のエネルギー配分を説明する低減係数 で、 ρ は媒質の密度、Cs は媒質のせん断波速度である。

本調査では、 $R(\theta, \phi)$ 、F、Vは Hanks and McGuire(1981)¹⁵、 ρ 、Csは原田ら (1995)¹³により、次のとおりとした。

 $R(\theta, \phi) = 0.63$ F=2.0 V=0.5 $\rho = 2.7 (g/m^3)$ Cs=3.4 (km/s)

$$As(\omega) = \frac{Mo\omega^2}{1 + (\omega/\omega_c)^2}$$
(3)

Mo は地震モーメント、 ω 。はコーナ振動数で、コーナ振動数は地震モーメント Mo と地震断層の応力パラメータ $\Delta \sigma$ により次式としている。

$$\omega_c = 2\pi \times 4.9 \times 10^6 C_s \left(\frac{\Delta \sigma}{Mo}\right)^{1/3}$$

本調査では、 $\Delta \sigma$ は、地震によらず $\Delta \sigma = 3.12 \times 10^{10} (N/m^3)$ とし、*Mo* は各地震の震源パラメータとして設定した。

$$A_D(\omega) = \frac{1}{1 + (\omega/\omega_{\text{max}})^n} \frac{1}{R} \exp(-\frac{\omega R}{2QC_s})$$
(4)

右辺第1因子は、地震波の高振動数を遮断するフィルターで、本調査では n =1 と した。第2因子は、せん断波(S波)の幾何学的減衰特性、第3因子は地震波のエ ネルギーが地殻や地盤材料の非弾性的性質により消費される材料減衰 Q の効果を表 す。

¹⁵ Hanks, T. C. and R. K. McGuire (1981): The character of high frequency strong ground motion, Bull.Seism. Soc. Am. 71, pp.2071-2095.

本調査では、

 $\omega_{\rm max} = 2\pi \times 10^{(1.824-0.160M)}$

 $Q = 10^{(q \log(\omega/2\pi) + q^2)}$

*q*1、*q*2 は地域によって変る変数で、本調査では Kiyono(1992)¹⁶による九州-四国-中国地方の値である *q*1 = 0.64、*q*2 = 2.1 を採用した。

②小地震波の重ね合わせ

非定常スペクトル密度関数 $Saa(t, \omega)$ を持つ時刻 t における非定常確率波 a(t)を 正弦波の級数和として次式により計算する。

$$a(t) = \sqrt{2} \sum_{j=1}^{N\omega} \sqrt{2S_{aa}(t,\omega_j)\Delta\omega} \cos(\omega_j t + \phi_j)$$
(5)

$$\omega_j = j\Delta\omega$$
 $\Delta\omega = \frac{\omega_u}{N_\omega}$ $j = 1, 2, \dots, N_\omega$

このとき、ωu は振動数の上限値で、これ以上の振動数では非定常スペクトルの 振幅が数学的又は物理的理由から十分に小さくゼロとみなされる振動数である。ま た、φjは(0,2π)の間で一様分布を持つお互いに独立な不規則位相角である。

本調査では、 $\omega_u = 2\pi \times 50(rad/sec), N_\omega = 1,024$ として計算した。 なお、非定常パワースペクトル密度関数 $S_{aa}(t, \omega)$ は

$$S_{aa}(t,\omega) = \frac{1}{2\pi} |W(t,\omega)|^2 |A(\omega)|^2$$
(6)

により求め、このとき $A(\omega)$ は 1 式で求め、 $| W(t, \omega) |$ は、地盤加速度波形の非 定常性を表すための変換係数で、原田ら(1995)¹³による次式により求めた。

$$|W(t,\omega)| = \frac{e^{-(c_1\omega + c_2)t} - e^{-(c_3\omega + c_4)t}}{e^{-(c_1\omega + c_2)t^*} - e^{-(c_3\omega + c_4)t^*}}$$
(7)

$$t^{*} = \frac{\ln(c_{1}\omega + c_{2}) - \ln(c_{3}\omega + c_{4})}{(c_{1}\omega + c_{2}) - (c_{3}\omega + c_{4})}$$
(8)

$$c_1 = [(6.0\Delta - 1600.0)M + 14000.0 - 54.0\Delta] \times 10^{-6}$$

$$c_2 = [(4.0\Delta - 1000.0)M + 9500.0 - 36.0\Delta] \times 10^{-4}$$

¹⁶ Kiyono,J. (1992):Identification and synthesis of seismic ground motion in structural response analysis, PhD thesis, Dept. of Civil Engineering, Kyoto University.

$$c_3 = [(6.0\Delta - 1600.0)M + 15000.0 - 54.0\Delta] \times 10^{-6}$$

 $c_4 = [(4.0\Delta - 1000.0)M + 9510.0 - 54.0\Delta] \times 10^{-4}$
 $M: マグニチュード、 \Delta : 震央距離(km)$

なお、1 式は、加速度波形のスペクトル振幅幅を表すもので、速度は計および変 位波形のスペクトル幅は次のとおりとなる。

$$|V(\omega)| = \frac{1}{\omega} |A(\omega)|$$

$$|U(\omega)| = \frac{1}{\omega^2} |A(\omega)|$$
(9)
(10)

③地震基盤における大地震波形の合成

大地震の地震断層を小断層が集合したものとして扱い、S 波の距離減衰は震源から観測点までの距離 (R_{mn}) に逆比例するとして、大地震の地震動を小地震の地震 動 $\mathbf{u}_0(\mathbf{x}, \boldsymbol{\omega})$ から 11 式により近似的に計算している。

$$\begin{split} u(x,\omega) &= \sum_{m=1}^{N_{L}} \sum_{n=1}^{N_{w}} \frac{R_{0}}{R_{mn}} T_{mn}(\omega) e^{-i\omega(\tau_{mn}+\tau_{mn})} u_{0}(x,\omega) \end{split} \tag{11}$$

$$\begin{split} R_{mn} & : \, \text{小断層}\,(\text{m},\text{n})\,\text{から観測点までの距離} \\ t_{mn} & : \, \text{小断層}\,(\text{m},\text{n})\,\text{から発生したS}\,\text{波が観測点に到達する時間} \\ \tau_{mn} & : \, \text{断層}\,\text{Ook壊面が震源から小断層}\,(\text{m},\text{n})\,\text{に到達するまでの時間遅れ} \\ T_{mn}(\omega) & : \, \text{伝達関数} \end{split}$$

本調査では、伝達関数は、原田ら(1995)¹³を参考として、下記の Brune モデ ルを採用した。

$$T_{mn}(\omega) = \left[\frac{\omega_2 + \left(\frac{N}{\tau}\right)^2}{\omega_2 + \left(\frac{1}{\tau}\right)^2}\right] \left[\frac{i\omega - \left(\frac{1}{\tau}\right)}{i\omega - \left(\frac{N}{\tau}\right)}\right]$$
(12)

- (イ) 地表面の地震動予測
 - a 南海トラフ巨大地震

南海トラフ巨大地震の地表面の地震動予測は、内閣府(2012a)¹による南海トラ フ巨大地震の想定結果を活用し、広島市の地盤モデルに基づく地震動増幅度を用い て求めた。その手順を図Ⅲ 2.8に示す。

図皿 2.8 南海トラフ巨大地震の地表面地震動算定の手順

①内閣府提供の 250mメッシュの地表震度 *I*aと、震度増分 dI から、深部地盤表面の 震度 *I*aを、次の式により求めた。

 $I_{\rm a} = I_{\rm b} + {}_{\rm d}I$

②深部地盤表面の震度から、深部地盤表面の加速度 A。は、内閣府(2012a)¹の提供 データを参考に次の式により求めた。

 $log_{10}A_{\rm b} = (I_{\rm b} - 0.59) / 1.89$

③ b で述べる応答解析により求められる深部地盤表面の最大加速度(A)と地表の実効加速度(A)の関係式から、地盤タイプごとに平均曲線を求め、同平均曲線から地表の実効加速度(A)を算定した。

④地表の実効加速度(A₀)から、次の式により地表震度 I を求めた。

 $I = 2 \cdot log_{10}A_0 + 0.94$

⑤ b で述べる応答解析により求められる深部地盤表面の最大加速度(Ab)と、地表最大加速度(PGA)、地表最大速度(PGV)、SI 値の関係式を地盤モデルごとに設定し、それぞれを算定した。

b 既に明らかとなっている断層等を震源とする地震

地盤の応答解析手法

浅部地盤における地震動の応答解析は、重複反射理論に基づく計算手法で行った。 これは、メッシュごとに地震基盤から地震波を入射し、水平成層と仮定した地盤に おいてS波が反射・透過を繰り返した結果の地表面での地震動を算定する手法であ る。

深さとともに速度が速くなる水平成層地盤においては、地震波は浅部地盤内をほ ぼ垂直に上昇するものと仮定できる。図III 2.9に重複反射理論の概念図を示す(こ こでの横軸は、経過時間を表している)。地震基盤から入射した地震波は、物性値 の異なる層面において透過波と反射波に分かれる。それぞれの波は、次の物性値の 異なる層面においてさらに透過波と反射波に別れる。それらが繰り返された結果と して、地表での地震波形が求められる。

図Ⅲ2.9 重複反射理論の概念

②深部地盤表面での地震動

深部地盤は固結岩盤からなり、地震波は弾性波として伝わる。そこで、深部地盤 内(地震基盤面から深部地盤表面まで)においては弾性波として取り扱う線形応答 解析を行い、深部地盤表面での地震波形を算定した。

深部地盤は、1km メッシュごとに地盤モデルを設定しており、深部地盤表面での 地震動は 1km メッシュ単位で求めている。

一方、浅部地盤は 250m メッシュ単位で地盤モデルを設定しているため、深部地盤 から浅部地盤への入力地震動は、周辺 1km メッシュの深部地盤表面における最大加 速度値の分布から、等値線法による按分計算を行い、各 250m メッシュに割り当てた。

③地表での地震動

浅部地盤は未固結堆積物からなり、地震動により大きな力が加わると、地盤内に 生じるせん断ひずみ(γ)によって、土の剛性率(G)や減衰率(h)が変化する。G 及び h のひずみ依存性は、動的変形特性と呼ばれ、応答解析を実施する際に土の非 線形特性を加味することができる等価線形法(FDEL)を用いた。

等価線形法(FDEL)に用いた動的変形曲線は、古山田ら(2003)¹⁷を参考として設 定した。

図 二 2.10 古山田ら(2003)¹⁷を参考とした動的変形特性

¹⁷ 古山田耕司・宮本裕司・三浦賢治(2003):多地点での現位置採取資料から評価した表層地盤の非線形特性、第 38 回地盤工学研究 会発表講演集、pp.2077-2078.

④震度階級の決定手法

震度階級は、気象庁の計測震度である震度階級に準拠し、次の手法により求めた。

<気象庁計測震度の算定法>

- a.3 成分(水平 2、上下 1 成分)の加速度波形からフーリエスペクトルを計算する。
- b. フーリエスペクトルの周期に関係した次の3フィルターを乗じる。図図Ⅲ
 2. 11に7)からりの3つのフィルターとそれらを掛け合わせた総合特性を示した。
 7)体感と震度の関係を考慮したフィルター
 - $(k / f)^{1/2}$
 - k:係数(1.00) f:周波数
 - ()ハイカットフィルター

 $(1 + 0.694X^{2} + 0.241X^{4} + 0.0557X^{6} + 0.009664X^{8})$

+ 0.00134 X^{10} + 0.000155 X^{12}) ^{-1/2}

 $X = f / fc \qquad (fc = 10 \text{Hz})$

ウ) ローカットフィルター

 $(1-exp (- (f/f0)^{-3}))^{-1/2}$

- f0: 震度算定に用いる周波数の下限(0.5Hz とする。)
- c. フィルター処理したスペクトルを逆フーリエ変換により加速度と速度の中間的 な時刻歴波形を求める。
- d.3成分の時刻歴波形をベクトル合成する。
- e. ベクトル波について、その絶対値が A 以上である時間の合計が τ (継続時間: 0.3 sec とする。) となる A を求める。
- f. 河角(1943)¹⁸による震度と加速度の関係式に A'を代入し、計測震度(I)を 求める。

 $I = 2 \cdot logA' + 0.94$

g. 計測震度から震度階級を決定する。

表 12.4 計測震度と震度階級の対比表

計測震度	0.	51.	5 2.	5 3.	5 4.	5 5	.0 5.	.5 6.	0 6.	5
震度階級	0	1	2	3	4	5弱	5強	6弱	6強	7

¹⁸河角廣(1943):震度と震度階、地震、第15巻、pp.6-12.

図 = 2.11 フィルターの総合特性

⑤地表最大加速度の計算手法

地表最大加速度(PGA)は、地震動の強さを表す一般的な指標の一つである。物体 に加わる力の大きさは、加速度に比例して増大する性質がある。そのため、最大加 速度が大きい場合は、大きな破壊力を持つことになる。ただし、加速度波形の一部 分だけ振幅が大きくなる場合は、一般建物等の構造物に対してそれほど大きな被害 を与えることは少ないといえる。

地表最大加速度(*PGA*)は、震度(*I*)と地表最大加速度(*PGA*)の関係式(童・山 崎(1996)¹⁹)を用い、計測震度(*I*)をインプットして求めた。

 $I = 0.59 + 1.89 \cdot logPGA$

¹⁹ 童華南・山崎文雄(1996):地震動強さ指標と新しい気象庁震度との対応関係、生産研究、第 48 巻、11 号、pp.547-550.

⑥地表最大速度の計算手法

地表最大速度(PGV)は、地表最大加速度と同様、地震動の強さを表す指標の一つ である。速度は、物体が移動するときの速さと方向を合わせたものであり、最大速 度が大きいほど大きな破壊力が働くことになる。最大速度と地震時の建物被害の相 関関係は、最大加速度と建物被害の関係より強く、最大速度が大きくなればなるほ ど、地震時の建物被害状況とよく一致すると言われている。地表最大速度(PGV) は、震度(I)と地表最大速度(PGV)の関係式(藤本・翠川(2005)²⁰)を用い、 計測震度(I)をインプットして求めた。

 $I = 2.002 + 2.603 \cdot log(PGV) - 0.213 \cdot (log(PGV))^{2} \quad (4 \le I)$ $I = 2.165 + 2.262 \cdot log(PGV) \quad (I < 4)$

⑦SI 値の計算手法

SI 値(Spectral Intensity:スペクトル強度)は、アメリカのハウスナー (G.W. Housner)によって提唱された地震動の強さの指標であり、地震動の周期 0.1 ~2.5 秒間の速度応答スペクトルの平均値(単位カイン:cm/sec)である。建物の 周期が 0.1~2.5 秒であるため、建物にどの程度の被害が生じるかを示す指標となる。 都市ガスにおいては、SI 値を指標に、供給停止の判断をしている。

SI 値は、震度(*I*)と SI 値の関係式(童・山崎(1996)¹⁹)を用い、計測震度 (*I*)をインプットして求めた。

 $SI = 10^{-1.16+0.5 \cdot I}$

²⁰ 藤本一雄・翠川三郎(2005):近年の強震記録に基づく地震動強さ指標による計測震度推定法、地域安全学会論文集、No.7、pp.241-246.

(2) 液状化

液状化とは、地下水を豊富に含んだ砂質地盤が、地震動によって高くなった地下水圧に より、砂の粒子間の結合と摩擦力が低下し、液体のように緩んで動く現象のことであり、 流動化現象とも呼ばれる。このため、水・砂・泥を高く吹き上げる噴砂、噴泥によって地 盤が盛り上がったり、不同沈下、陥没を生じたりするので建物や土木構造物の転倒、沈下、 傾斜につながり、次のような被害が生じる。

①地中のガス管・上下水道管・地下埋設物等、軽量構造物の浮上
 ②杭等の深い基礎で支えていない建物、橋梁等の重量構造物の沈下・傾斜
 ③堤防等、盛土の基礎地盤の液状化に伴う構造物沈下やすべり破壊の発生
 ④護岸や擁壁の側方流動、押し出し 等

本調査では、震度分布と土質状況を基に、震度 5 強以上の地域を対象に、液状化が発生 する危険度及びその影響の度合を評価するため、250m メッシュごとの液状化指数(PL 値) を算定した。

なお、南海トラフ巨大地震においては、長継続時間地震動の特徴を反映するため、建物 被害想定に用いる沈下量をあわせて予測した。

- PL値:ある地点での液状化の可能性を総合的に評価するための指標であり、一般に PL値が15以上の場合、液状化の危険がかなり高いとされている。
- 沈下量 : 地震に伴い地表面が沈下する高さ

ア 液状化危険度評価

(ア) 液状化危険度評価の流れ

液状化危険度評価は、図Ⅲ 2.12の手順で行った。

図皿 2.12 液状化危険度評価の流れ

a 液状化用地盤モデルの設定

浅部地盤モデルの内、深さ 20m までに未固結堆積物がある地盤モデルを抽出し、 液状化の可能性がある地盤モデル(液状化用地盤モデル)を設定した。

b 液状化用地盤モデルごとのボーリングデータによる地表最大加速度と PL 値の関係 算定

収集したボーリングデータ(11,674本)の内、N値が記載されていないもの、掘 削深度が基盤に到達せず、かつ20mに達していないものを除く5,344本を利用した。 ①ボーリングデータごとの地表最大加速度-PL値の関係式設定

ボーリングデータごとに、入力加速度レベル別に液状化危険度指数(PL 値)の計算を行い、地表最大加速度とPL 値との関係式を求めた。

②液状化用地盤モデルごとのボーリングデータによる地表最大加速度と PL 値の関係 式設定

①で求めたボーリングデータの地表最大加速度と PL 値の関係式を液状化用地盤モデルごとに整理し、各液状化用地盤モデルの平均的な関係式を設定した。

PL 値については、後述する日本道路協会(2002)²¹の手法に基づき液状化抵抗率 FL を求め、深さ方向に重み付けした PL 法により求めている。

図皿 2.13 収集ボーリングデータの分布

c 各メッシュの PL 値算定

想定地震ごとに求められているメッシュの地表最大加速度を b で算定した地盤 モデルごとの平均的な関係式の入力値とし、各メッシュの PL 値を算定した。

d 液状化危険度分布図作成

各メッシュの PL 値算定結果に基づき、次の区分により液状化危険度を分布図に示した。

30.0<PL :液状化危険度は極めて高い
15.0<PL≦30.0:液状化危険度はかなり高い
5.0<PL≦15.0:液状化危険度は高い
0.0<PL≦ 5.0:液状化危険度は低い
PL= 0.0:液状化危険度はかなり低い

²¹ 日本道路協会(2002):道路橋示方書·同解説.

(イ) 液状化危険度の評価条件

液状化危険度の評価条件は、次のとおりとした。

a 評価対象土層

地震時に液状化が起こる可能性のある土層として、沖積砂質土、礫質土、洪積砂 質土層を評価対象土層とした。

b 地下水位

地下水位は、その場所の特性によって異なり、また降雨・潮汐の影響により時間 的にも変化する。各地の地下水位を個別に設定する情報が得られておらず、本調査 では液状化評価を安全側に判定するため、一律に地表面下 1mとした。これは、一 般的な平地部の水位としては高い条件になっている。ただし、降雨直後などはこれ を上回る水位になる場合があることに留意する必要がある。

- c 評価対象となる震度 液状化危険度の評価対象となる震度は、震度 4 以下では、ほとんど液状化を起こ さないことから、震度 5 弱以上とした。
- (ウ) PL 値の算定方法

PL 値は、以下に示す道路橋示方書・同解説(V耐震設計編 日本道路協会 2002)²¹の 方法を用いて算定した。

a 液状化に対する抵抗率 FLの算定

地盤内の各深度における液状化に対する抵抗率 F_L 値は、地層が有する動的せん断 強度比 *R* と作用する地震時せん断応力比 *L* によって定義し、この値が 1.0 以下の土 層については、液状化の可能性があるとみなすものである。

 $F_{\rm L} = R / L$

地震時せん断応力比 L は、地表最大加速度から次の式で表される。

$$L = (\alpha / g) \cdot (\sigma v / \sigma v') \cdot \gamma_d$$
ここに、 α : 地表最大加速度 (gal)
 g : 重力加速度 (=980gal)
 σv : 全上載圧 (kgf/cm²)
 $\sigma v'$: 有効上載圧 (kgf/cm²)
 γ_d : 低減係数 (=1.0-0.015z、z : 地表面からの深さ (m))

地層が有する動的せん断強度比 R は、地盤の繰返し三軸強度比 RL を用いて次の補 正式により求めた。

 $R = Cw \cdot RL$
地震動特性による補正係数 Cw は次のように定められている。

①タイプI: プレート境界型の大規模な地震の場合 $<math>C_W = 1.0$

本調査では想定地震の内、南海トラフ巨大地震について、東北地方太平洋沖地震の被害実態の調査結果を踏まえ、地層が有する動的せん断強度比 *R* を求める際に、 東北地方太平洋沖地震の被害実態の調査結果を踏まえた千葉県(2012)²²の手法に基づき、地盤の繰り返し三軸強度比(RL)を補正する係数(*Cw*)を 1.0 から 0.8 に変更した。

②タイプⅡ:内陸直下型地震の場合

 $C_{\rm W} = \begin{cases} 1.0 & (RL \le 0.1) \\ 3.3RL + 0.67 & (0.1 < RL \le 0.4) \\ 2.0 & (0.4 < RL) \end{cases}$

繰返し三軸強度比 RL は、次式により算定した。

$$RL = \begin{cases} 0.0882\sqrt{(Na/1.7)} & (Na<14) \\ 0.0882\sqrt{(Na/1.7)} + 1.6 \times 10^{-6} \cdot (Na-14)^{4.5} & (Na \ge 14) \end{cases}$$

粒度の影響を考慮した補正 N 値(Na)は、次式により求めた。

(砂質土の場合)

$$N_{\rm A} = C_1 \cdot N_1 + C_2$$

 $N_1 = 1.7 \cdot N \swarrow (\sigma v' + 0.7)$

22 千葉県(2012):東日本大震災千葉県調査検討専門委員会資料.

$$C_{1} = \begin{cases} 1.0 & (0\% \leq Fc < 10\%) \\ (Fc + 40) /50 & (10\% \leq Fc < 60\%) \\ Fc /20 - 1 & (60\% \leq Fc) \end{cases}$$
$$C_{2} = \begin{cases} 0 & (0\% \leq Fc < 10\%) \\ (Fc - 10) /18 & (10\% \leq Fc) \end{cases}$$

Na = {1 - 0.36 · log₁₀ (D₅₀ / 2) } · M
 ここに、N :標準貫入試験から得られるN値
 M₁ : 有効上載圧 1kgf/cm²相当に換算したN値
 C₁、C₂ :細粒分含有率によるN値の補正係数

南海トラフ巨大地震以外の想定地震については、道路橋示方書・同解説(V耐震 設計編 日本道路協会 2002)²¹の中で定められている補正係数(*Cw*)を変更せずに 用いた。

b 液状化指数 PL の算定

建物や埋設管等の構造物に液状化が与える影響を想定するためには、ある深度に おける液状化の発生の可能性のみではなく、任意の地点の地盤全体の液状化の発生 の可能性を評価する必要がある。液状化液状化抵抗率(F_L)は、ある深度における 液状化の発生の可能性を評価するものであるため、地盤全体を評価する指標として 液状化指数 PL を岩崎ら(1980)²³による次式により求めた。

 $PL = \int_{0}^{20} (1 - F_{\rm L}) \cdot (10 - 0.5z) dz$

E: 液状化に対する抵抗率 ($E \ge 1.0$ の場合にはE = 1)

Z : 地表面からの深さ(m)

²³ 岩崎敏男・龍岡文夫・常田賢一・安田進(1980):地震時地盤液状化の程度の予測について、土と基礎、第 28 巻、第 4 号、pp.23-29.

イ 沈下量の算定

南海トラフの巨大地震については、建物被害の想定のため、沈下量を算定した。

沈下量の算定は、内閣府(2012a)2の手法に準じ、日本建築学会(2001)²⁴の建築基礎 構造設計指針に示されている補正N値と繰返しせん断ひずみの関係を用いて、補正N値 と応力比のプロット点に対応する繰返しせん断ひずみを隣接するγcy曲線の対数補間に より求めた。

このとき、繰返しせん断ひずみ 8%の曲線より左側にプロットされる場合には $\gamma cy = 8\%$ とし、0.5%より右側にプロットされる場合には、 $\gamma cy = 0.5\%$ とした。

繰返しせん断ひずみγcy を体積ひずみεv として読み替えた。

沈下量 S の算定式は次のとおりとした。

 $S = \Sigma (H_1 \times \varepsilon v_i), \quad i = 1 \sim n$

- *S* : 沈下量
- *H* : FL < 1.0 となる砂質土層 i の層厚
- *ε*vi : FL<1.0 となる砂質土層 i の体積ひずみ
- *n* : FL<1.0 となる砂質土層数

図Ⅲ 2.14 補正 N 値と繰返しせん断ひずみの関係24

24 日本建築学会(2001):建築基礎構造設計指針.

(3) 土砂災害

通常時における斜面崩壊の危険性は、地形要因や地質・土質要因、環境要因を考慮した 方法(既往地震による斜面崩壊事例を統計的に調査し、作成した判定基準をもとに危険度 判定を行う手法)によって判定される。

地震時における斜面崩壊の危険性も、地震動の大きさのみならず、地形、地質等による 影響も考慮する必要がある。

本調査では、斜面崩壊等の危険があるものの内、市内で設定されている急傾斜地崩壊危 険箇所、地すべり危険箇所、山腹崩壊危険地区を対象に、個々の斜面における地形や地被 の状況(地震動に対し斜面のもつ崩壊の素因的条件)と、当該斜面の存在するメッシュに おける地震動の大きさから、斜面の崩壊危険度を予測した。

ア急傾斜地崩壊危険箇所の評価手法

(7) 対象と資料

「急傾斜地崩壊危険箇所調査(広島県砂防課、平成14年度調査)」による急傾斜地 崩壊危険箇所の内、保全対象人家(公共施設を含む)を有し、かつ対策工事が実施さ れていない箇所を対象に評価した。

図皿 2.15 急傾斜地崩壊危険箇所の分布

(イ) 判定方法

中央防災会議(2006)²⁵を参考に、地形・地質状況等を点数付けし、その合計点数(基 準要素点)に応じて耐震ランクを設定し、さらに当該急傾斜地崩壊危険箇所における 震度から土砂災害危険度ランクを判定した。

大項目	小項目	点数
	50m≦H	10
斜面の直々	$30m \leq H < 50m$	8
所面の同で	10m≦H<30m	7
	H<10m	3
	$59^{\circ} \leq \theta$	7
斜面勾配 (θ)	30° (45°) $\leq \theta < 59^{\circ}$	4
	$ heta < 30^\circ$ (45°)	1
	有	4
メーハーハング	無	0
	亀裂が発達、開口しており、転石、浮石が点在する	10
	風化、亀裂が発達した岩である	6
斜面の地盤	礫混じり土、砂質土	5
	粘性土	1
	風化、亀裂が発達していない岩である	0
ましる回を	0.5m 以上	3
表土の厚さ	0.5m 未満	0
	有	4 (2)
)	無	0
落石・崩壊履歴	新しい崩壊地がある	5
	古い崩壊地がある	3
	崩壊値は認められない	0

表Ⅲ 2.5 耐震ランクの配点¹²

注:点数は、中央防災会議(2006)²⁵での配点を参考とし、広島県の特性を考慮して斜面勾配と湧 水状況を変更している(カッコ内は中央防災会議(2006)²⁵で使用された値)。

表Ⅲ 2.6 耐震ランク

耐震ランク	基準要素点
а	24 点以上
b	14~23 点
с	13 点以下

²⁵ 中央防災会議(2006):首都直下地震対策専門調査会(第15回)資料3.

耐震ランク 震度階級	а	b	С
6 強以上	А	А	B (A)
6弱	А	B (A)	В
5 強	B (A)	В	С
5弱	В	С	С
4	С	С	С

表Ⅲ 2.7 危険度ランク判定テーブル¹²

注:平成 13 年芸予地震の再現計算結果を参考にテーブルを一部 変更している(カッコ内は中央防災会議(2006)²⁵で使用さ れた値)。

表Ⅲ 2.8 土砂災害危険度ランク

ランク	危険度	
А	発生する可能性が高い	
В	発生する可能性がある	
С	発生する可能性は低い	

イ 地すべり危険箇所の評価手法

(7) 対象と資料

「地すべり危険箇所調査(広島県砂防課、平成10年)」「山地災害危険地区調査 (広島県森林保全課、平成15年)」「地すべり等崩壊危険地調査(広島県農業基盤課、 平成6年)」による地すべり危険箇所の内、保全対象人家(公共施設を含む)を有し、 かつ対策工事が実施されていない箇所を対象とした。

図皿 2.16 地すべり危険箇所の分布

(イ) 判定方法

地すべり危険箇所の危険性については、地質条件、地形的変状、活動履歴等を考慮 した手法によって個別に判定されている。地震時の地すべりの危険性は、その要因が 落石や崩壊と比較して不明瞭であり、危険性を詳細に評価するためには個別の詳細な 安定解析を行うか、既往調査結果を判断指標に用いる他ない。本調査では、上記既往 調査の危険度ランク(A:発生する可能性が高い、B:発生する可能性がある、C:発生 する可能性は低い)を耐震ランク(a、b、c)と読み替えて、耐震ランクとメッシュ震度 から急傾斜地崩壊危険箇所と同様に危険度を判定した。

ウ 山腹崩壊危険地区の評価手法

(7) 対象と資料

「山地災害危険地区調査(広島県森林保全課、平成15年)」を用い、当該資料によ る山腹崩壊危険地区の内、保全対象人家(公共施設を含む)を有し、かつ対策工事が 実施されていない箇所を対象とした。

図皿 2.17 山腹崩壊危険地区の分布

(イ) 判定方法

上記既往調査の危険度ランク(A、B、C)を耐震ランク(a、b、c)と読み替えて、耐 震ランクとメッシュ震度から急傾斜地崩壊危険箇所と同様に危険度を判定した。

(4) 津波

ア津波浸水想定の概要

津波浸水想定は、「広島県地震被害想定調査報告書(H25.10)」で検討された結果を 用いる。

津波浸水想定は、津波断層モデルから計算された上下地殻変動量を踏まえて、津波の 初期水位を与え、

・外洋から沿岸への津波の伝播・到達

・沿岸から陸上への津波の遡上

の一連の過程を連続して数値計算するものである。

本調査における津波浸水想定は、国土交通省(2012a)²⁶に基づき、海底での摩擦及び 移流項を考慮した非線形長波理論(浅水理論)により実施した。

イ 津波断層モデルの設定

(ア) 南海トラフ巨大地震

内閣府(2012a)が設定している 11 ケースの津波断層モデルの内、広島市沿岸部に おける波高が高くなり、浸水面積が大きくなると想定される次の津波断層モデルケー スを選択し、想定対象とした。

30cm 以上浸水深面積が最大となり、広島市にとって最大の被害となると想定される 津波断層モデル「ケース 1」を選定した。

「ケース1」の津波断層モデルの概要を、図Ⅲ 2.18(1)に示す。

(イ) 瀬戸内海域活断層等による地震

既に明らかとなっている断層等を震源とする地震の内、震源が海域にある次の2地 震を「瀬戸内海域活断層等による地震」として定義し、想定対象とした。

- ・安芸灘~伊予灘~豊後水道
- ·安芸灘断層群(広島湾-岩国沖断層帯)

2 地震の津波断層モデルの概要を、図Ⅲ 2.18 (2)~図Ⅲ 2.18 (3)に示す。

²⁶ 国土交通省(2012a):津波浸水想定の設定の手引き.

図皿 2.18 (1) 津波断層モデル(南海トラフ巨大地震のケース 1)

図Ⅲ 2.18 (2) 津波断層モデル(安芸灘~伊予灘~豊後水道)

対象津波	Ż	広島県独自モデル5による想定地震津波
マグニチ	ニュード	Mw=6.9
使用モデ		
概要	説明	地震調査研究推進本部から平成22年5月に公表された「全国 地震動予測地図」で検討された「安芸灘断層群(広島湾-岩国沖 断層帯)」による津波断層領域を想定した地震による津波とし て想定
	波源域	Find the set of the set
	地盤 変動量	

図皿 2.18 (3) 津波断層モデル(安芸灘断層群(広島湾-岩国沖断層帯))

ウ 津波浸水想定

津波の初期水位を与える津波断層モデルを波源モデルとして与え、差分化した運動方 程式及び連続の式を解くことによって、津波の計算を行った。陸域では、さらに汀線が 水位の昇降に伴って移動することを考慮した。

(7) 基本方程式

鉛直方向の積分流量のx、y方向の成分M、Nを以下の様に定義する。

$$M = \int_{-\zeta}^{h-\eta} u dz \tag{1}$$

$$N = \int_{-\zeta}^{h-\eta} v dz c \tag{2}$$

この積分流量 M、Nを用い、断層による地盤変動を考慮し、非回転、長波近似、非粘 性を考慮すると基本方程式は次の式のような方程式として表される。

$$\frac{\partial M}{\partial t} = -gD\frac{\partial \zeta}{\partial x} - \frac{gn^2}{D^{\frac{1}{3}}}\frac{M\sqrt{M^2 + N^2}}{D^2} - \frac{\partial}{\partial x}\left(\frac{M^2}{D}\right) - \frac{\partial}{\partial y}\left(\frac{MN}{D}\right)$$
(3)

$$\frac{\partial N}{\partial t} = -gD\frac{\partial \zeta}{\partial y} - \frac{gn^2}{D^{\frac{1}{3}}}\frac{N\sqrt{M^2 + N^2}}{D^2} - \frac{\partial}{\partial x}\left(\frac{MN}{D}\right) - \frac{\partial}{\partial y}\left(\frac{N^2}{D}\right)$$
(4)

$$\frac{\partial \zeta}{\partial t} = -\left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) \tag{5}$$

ただし、

- *u*, *v* : x, y 方向の流速成分
 - ς :初期潮位からの水位変化
 - h : 初期潮位からの地盤変動前の水深
 - g : 重力加速度 (9.8m/s²)
 - n :マニングの粗度係数
 - *η* : 地盤変動量
 - D : 全水深、 $D=h+\zeta-\eta$

である。

海底から海面までの質量輸送を表す運動方程式(3)、(4)及び連続の式(5)を差分化し て時間積分を行う。 各変数の定義は図Ⅲ 2.19、図Ⅲ 2.20のようになる。また、図Ⅲ 2.21に差分計算の 概念図を示す。

図皿 2.20 流量と水位定義点配置

図Ⅲ 2.21 差分計算の概念図

(イ) 計算メッシュ(格子)

メッシュのサイズは、国土交通省(2012a)²⁶に基づき局所的な地形も反映されるように、広島県沿岸全域を10m×10mとして計算した。

(ウ) 初期潮位

本調査では、各潮位観測港における 2009 年~2013 年の天文潮位の最高潮位(最大 と最小を除いた平均値)を初期潮位として設定した。

図Ⅲ 2.22に、本想定で用いられている各メッシュエリアの初期潮位を示す。

図Ⅲ 2.22 各潮位観測港における設定潮位(単位:T.P.+cm)

(I) 計算時間

津波最高水位が生じる時間より長く、水位変動が収まり最大の浸水区域及び浸水深 が得られるように、12時間とした。

- (オ) 境界条件
 - a 陸上を遡上する津波の先端条件について

津波浸水想定の計算では、陸上への遡上を考慮するために、津波の先端条件を設 定する必要がある。この先端条件の処理には、計算過程で時刻ステップごとに各計 算格子に水があるか否かを判別し、隣接する計算格子の水位との関係も考慮して流 量を設定する。本調査では、海岸が低く、水が陸上に溢れる場合、津波の先端 での条件は小谷ら(1998)²⁷を用いた。

b 開境界条件

津波浸水想定の計算にあたっては、計算領域を限定し、外海に境界を設けること になる。そのため外海の境界は開境界とし、津波は境界で反射せずに、進行波とし て通過するものとした。

(カ) 空間接続

内閣府(2012a)に準じて深海から浅海になるにつれてメッシュサイズを小さくし、 異なるメッシュ領域の接続を行った。

(キ) 時間接続

各計算領域に対して試算して計算が安定して行われる計算時間間隔を検討し、本計 算では、0.2秒と設定した。

(ク) 構造物条件

構造物が機能する場合、津波が堤防を越える場合に当該堤防は破壊する(構造物な し)とした。

構造物が機能しない場合の各種施設の取り扱いは、原則、図Ⅲ 2.23に示すフローに 従い、検討を行った。

①地震3分後に液状化によってコンクリート構造物は比高0まで沈下

(パターン3)

②地震3分後に液状化によって盛土構造物は75%沈下、越流したら破壊

(パターン2)

③水門等の開口部は、開閉の2パターン

- ④L2 地震動対応施設は、整備中のため、L1 地震動対応施設と同じ取り扱いとした。
 - ここでL1 地震動とL2 地震動の定義は以下のとおりである。
 - L1 地震動 :構造物の供用期間中に発生する確率が高い地震動
 - L2 地震動 :構造物の供用期間中に発生する確率は低いが、過去から将来にわたって最大級の強さを持つ地震動

図Ⅲ 2.23 地震及び津波に対する各種施設の条件設定の考え方²⁶

(ケ) 波源条件

津波の断層モデルを規定する断層パラメータから解析的に求められる地盤の変位量 を波源条件として与える。ここで、地盤の変位量は、0kada(1985)²⁸による式を用いた。

(コ) 地殻変動

地殻変動の設定は、内閣府(2012a)¹の設定と同様に、陸域の沈降の効果を考慮し、 陸域の隆起の効果を、考慮しないものとした。表Ⅲ 2.9に陸域及び海域における隆 起・沈降の考え方を示す。

表Ⅲ 2.9	陸域及び海域における隆起。	・沈降の考え方
--------	---------------	---------

	隆起	沈降
陸域	隆起量を考慮しない	沈降量を考慮する
海域	隆起量を考慮する	沈降量を考慮する

²⁸ Okada, Y (1985) : Surface Deformation due to Shear and Tensile Faults in a Half Space, Bull. Seism. Soc. Am. 75, pp.1135-1154.

3 被害の想定

(1) 建物被害

揺れ、液状化、土砂災害、火災を原因とする建物被害は、全壊棟数、半壊棟数を 250m メ ッシュ単位で、津波を原因とする場合は 10m メッシュ単位で想定した。

建物被害は、揺れによって全壊した後、津波により流失するなど、複数の要因で重複して被害を受ける可能性がある。

本調査では、複数の要因の重複を避けるため、「液状化⇒揺れ⇒土砂災害⇒津波⇒火災 焼失」の順で被害を算定し、重複を除去した。

なお、揺れを原因とする建物被害想定において、面積 10ha を超える宅地造成地内は、被 害の割り増しを行っている。

ア 建物の現況

表 3.1 建物の現況

(単位:棟)

区域	木造	非木造	合計
広島市	296, 406	124, 777	421, 183

イ 液状化による建物被害の算定手法

- (7) 南海トラフ巨大地震の液状化建物被害
 - a 全壞棟数

メッシュごとの地盤沈下量と建物データから 250m メッシュごとの全壊棟数、半壊 棟数を想定した。全壊棟数は、内閣府(2012b)²⁹における液状化による地盤沈下量 と全壊率テーブルとの関係から算定した。半壊棟数は中央防災会議(2006)²⁵を参考 に、PL 値から液状化ランクを設定し被害率を乗じて算定した。

図Ⅲ 3.1 液状化による被害棟数(全壊棟数)の算定フロー²⁹

①メッシュごとの地盤沈下量を算定した。

- ②構造(木造/非木造)、用途(住家/非住家)、建築年代(木造 2 区分、非木造 4 区分)別の建物データを整理した。
- ③全壊率テーブルは内閣府(2012b)²⁹(図Ⅲ 3.2、図Ⅲ 3.3)を用い、非木造の 杭の有無については、広島県での統計がないため、栃木県(2004)³⁰における調 査結果(表Ⅲ 3.2)を参考とした。

²⁹ 内閣府(2012b):南海トラフの巨大地震対策検討ワーキンググループ、建物被害・人的被害の被害想定項目及び手法の概要. ³⁰ 栃木県(2004):地震被害予測・対策予測システム設計(被害予測)成果報告書.

区分	R C造		S造	
	支持杭・摩擦杭	直接基礎	支持杭・摩擦杭	直接基礎
1~3 階	45%	55%	15%	85%
4 階以上	80%	20%	55%	45%

表Ⅲ 3.2 非木造建物の杭打ち率30

④地盤沈下量と全壊率テーブルの関係から液状化による全壊棟数を算定した。

図Ⅲ 3.2 木造建物全壊率²⁹

b 半壞棟数

図Ⅲ 3.4 液状化による被害棟数(半壊棟数)の算定フロー

①PL 値を 250m メッシュごとに算定した。

②建物棟数データとメッシュの PL 値から、250m メッシュごとの半壊棟数を算定 した。液状化ランクは中央防災会議(2006)²⁵を参考として、表Ⅲ 3.3を用いた。

表Ⅲ 3.3 液状化ランク25

ランク	PL 値	
А	15.0 <pl< th=""></pl<>	
В	5.0 <pl≦15.0< td=""></pl≦15.0<>	
С	0.0 <pl≦5.0< td=""></pl≦5.0<>	

③液状化ランク別面積率は中央防災会議(2006)²⁵を参考として、表Ⅲ 3.4を用 いた。

ランク	面積率	
А	18%	
В	5%	
С	2%	

表 田 3.4 液状化ランク別面積率25

※1964年新潟地震時の液状化発生状況に基づき設定

④半壊率は、和歌山県(2006)³¹を参考として、表Ⅲ 3.5を用いた。

表 II 3.5 半壊率 31

構造	查 木造		非7	大造
建築年次 等	1961 年 以前	1962 年 以降	1982 年以降の 1~3F の 80%及び 1981 年以 前の 1~3F の建物	4F 以上及び 1982 年 以降の 1~3F の 20% の建物
半壊率	12.9%	18.0%	30.0%	0.0%

⑤被害棟数算定式は次のとおりとした。

半壊棟数=建物棟数×液状化ランク別面積率×半壊率

31 和歌山県(2006):和歌山県地震被害想定調査報告書.

(イ) 「既に明らかとなっている断層等を震源とする地震」の液状化建物被害

「既に明らかとなっている断層等を震源とする地震」は、プレート間地震よりも継続時間が短く、同様の液状化被害は出にくいと考えられる。そのため、断層による地震の被害実績をよく反映した島根県(2012)³²を参考に、メッシュごとの建物データと微地形区分から被害想定対象となる建物棟数を絞り込み、PL値・微地形区分ごとの液状化面積率・全壊率・半壊率を用いて全壊棟数、半壊棟数を想定した。

図Ⅲ 3.5 液状化による被害棟数の算定フロー

①地盤モデル作成に用いた 250m メッシュにより、微地形を区分した。
 ②微地形区分ごとの液状化面積率は、損害保険料率算定機構(2006)³³を参考として、
 表Ⅲ 3.6を用いた。

³² 島根県(2012):島根県地震被害想定調査報告書.

³³ 損害保険料率算定機構(2006): 微地形区分データを用いた広域の液状化発生予測手法に関する研究、地震保険研究、No.15.

微地形区分	1kmメッシュ 平均液状化 面積率(%)	根拠		
埋立地	20	兵庫県南部地震の値		
自然堤防	10	日本海中部地震・新潟県中越地震の値		
旧河道	25	新潟地震の値		
いらま端線対応	太平洋側: 5	(砂丘と同じとする)		
砂丘木油被种曲	日本海側: 15	日本海中部地震・新潟県中越地震の値		
ひん に、 月月 / 氏 もわ	太平洋側: 5	日本海中部地震・新潟県中越地震の値		
妙江间低地	日本海側: 5	(砂丘と同じとする)		
砂丘	5	砂州・砂礫洲、砂丘間低地と同程度と仮定		
砂州·砂礫州	5	日本海中部地震・新潟県中越地震の値		
後背湿地	3	日本海中部地震・新潟県中越地震の値		
一有州、海岸低地	太平洋側: 2	千葉県東方沖地震、兵庫県南部地震の値		
三用mi一海岸低地	日本海側: 10	日本海中部地震・新潟県中越地震の値		
扇状地型谷底低地	3	日本海中部地震・新潟県中越地震の値		
デルタ型谷底低地	3	日本海中部地震・新潟県中越地震の値		
急勾配扇状地	1	兵庫県南部地震の値		
緩勾配扇状地	1	兵庫県南部地震の値		
干拓地	15	日本海中部地震・新潟県中越地震の値		

表Ⅲ 3.6 微地形区分ごとの液状化面積率33

③PL 値を 250m メッシュごとに算定した。

 ④PL 値による低減係数は損害保険率算定機構(2006)³³を参考として、表Ⅲ 3.7を 用いた。

表Ⅲ 3.7 PL 値による低減係数³³

PL値の範囲	PL値による 低減係数
PL=0	0.0
0 <pl≦5< td=""><td>0.2</td></pl≦5<>	0.2
5 <pl≦15< td=""><td>0.6</td></pl≦15<>	0.6
15 <pl< td=""><td>1.0</td></pl<>	1.0

⑤木造建物及び非木造建物における全壊率・半壊率は千葉県(2008)³⁴を参考として、
 表Ⅲ 3.8、表Ⅲ 3.9を用いた。

34 千葉県(2008):平成 19 年度千葉県地震被害想定調査報告書.

	液状化の発生状況	住宅基礎の状況	全壊率 (%)	半壊率 (%)	根拠	
埋立地・顕著な流動化 が予測される地域 (日本海側の砂丘末端 緩斜面) 上記以外の地域	埋立地・顕著な流動化 が予測される地域 (日本海側の独ら本端	基礎が全般的に強い (1971年以降の住宅)	5	65	1995年兵庫県南部地震(芦屋浜) 2000年鳥取県西部地震(安倍彦名十富益団地 2007年新潟県中越沖地震(山本団地)	
	基礎が全般的に弱い (1970年以前の住宅)	45	45	1983年日本海中部地震(砂丘性平坦地等)		
		基礎が全般的に強い (1971年以降の住宅)	1	30	2007年新潟県中越沖地震(橋場地区)	
	工品以7下07地域	基礎が全般的に弱い (1970年以前の住宅)	25	25	1983年日本海中部地震(砂丘地等)	

表Ⅲ 3.8 木造建物における全壊率・半壊率³⁴

表Ⅲ 3.9 非木造建物における全壊率・半壊率34

	住宅基礎の状況	全壊率 (%)	半壊率 (%)
	杭なし	23	30
非木造 建物	杭あり (4階以上の建物、及び 1960年以降の1~3階 の建物)	0	0

⑥被害棟数算定式は、次のとおりとした。

木造全壊建物棟数

=木造建築年別建物棟数×微地形区分毎の液状化面積率×PL値による低減係数×木造建物における全壊率

木造半壊建物棟数

=木造建築年別建物棟数×微地形区分毎の液状化面積率×PL値による低減係数×木造建物における半壊率

非木造全壊建物棟数

=非木造建築年別建物棟数×微地形区分毎の液状化面積率 ×PL 値による低減係数×非木造建物における全壊率

非木造半壊建物棟数

=非木造建築年別建物棟数×微地形区分毎の液状化面積率 ×PL値による低減係数×非木造建物における半壊率

ウ 揺れによる建物被害の算定手法

震度分布と建物データから 250m メッシュデータごとの全壊棟数、半壊棟数を想定した。

図皿 3.6 揺れによる建物被害の算定フロー

①震度を 250m メッシュごとに算定した。

②全壊率曲線は内閣府(2012b)²⁹(図Ⅲ 3.7)を用い、全半壊率は阪神・淡路大震災の被害実績を基に設定した東京都(2006)³⁵を用いた。建物の分類は、構造(木造/非木造)、建築年代(木造6区分、非木造3区分)とした。

③被害棟数算定式は、次のとおりとした。

木造全壊建物棟数

=木造建築年別建物棟数×木造建物における計測震度別全壊率

木造半壊建物棟数

=木造建築年別建物棟数×木造建物における計測震度別全半壊率
 -木造全壊建物棟数

非木造全壞建物棟数

=非木造建築年別建物棟数×非木造建物における計測震度別全壊率

非木造半壊建物棟数

=非木造建築年別建物棟数×非木造建物における計測震度別全半壊率
 -非木造全壊建物棟数

- ④丘陵地・台地にある面積 10ha 以上の宅地造成地内の建物被害は、盛土部における 地震動の増幅効果を考慮して被害の割り増しを行った。
- ・丘陵地・台地における面積 10ha 以上の宅地造成地(住宅・工業・商業・流通団 地)の位置情報を収集し、整理した。各人工造成地の盛土面積率α(造成地全面 積に対する盛土部の面積割合)は、広島大学・地域防災ネットワーク、広島大学 災害軽減プロジェクト研究センター(2005)³⁶を利用し、盛土面積率が調査されて いない造成地は、他の造成地の平均値を用いた。
- ・各人工造成地の盛土面積率 α を用いて、250m メッシュ全面積に対する盛土面積率 β を算定した。
- ・250m メッシュごとに算定された揺れによる木造被害棟数(全壊+半壊)の内、造 成地盛土内のものについては、被害棟数を 3.65 倍した増分を加えた。このとき、

35 東京都(2006):首都直下地震による東京の被害想定報告書.

³⁶ 広島大学・地域防災ネットワーク、広島大学災害軽減プロジェクト研究センター(2005):平成 17 年度地域防災ネットワーク成果報告 書.

メッシュ内の被害棟数は均等に分布しているものとした。割増した被害棟数の内、 25%を全壊棟数、75%を半壊棟数とした。なお、被害の割増係数は、損害保険料算 定会(1992)³⁷において、1978 年宮城県沖地震における仙台市及びその周辺の丘 陵地・台地の宅地造成地の被害実態から設定したものである。また、被害の割増 は、盛土部分で地震動が増幅し、揺れによる被害が増加する効果を対象としたも ので、造成地盛土が崩壊することによる周辺の建物被害は対象としない。

³⁷ 損害保険料算定会(1992):人工地盤における地震被害予測に関する研究.

図III 3.7 (1) 全壊率曲線(木造)²⁹

III-62

エ 土砂災害による建物被害の算定手法

土砂災害による建物被害は、危険箇所の保全人家戸数と危険度ランク、崩壊確率から 250mメッシュごとに全壊棟数、半壊棟数を想定した。

図Ⅲ 3.8 土砂災害による被害棟数の算定フロー

①急傾斜地崩壊危険箇所を対象として、地形・地質状況等を点数付けし、その合計点数 (基準要素点)に応じて耐震ランク(A、B、C)を設定した(2 (3) 土砂災害を参 照)。地すべり危険箇所については、既往調査の危険度ランクを耐震ランクと読み替 えて、耐震ランクとメッシュ震度から急傾斜地崩壊危険箇所と同様に危険度を判定し た。

②震度を 250m メッシュごとに算定した。

③危険度ランク別の崩壊確率は、近年発生した直下地震の事例(新潟県中越地震、新潟県中越沖地震、岩手・宮城内陸地震)を踏まえ、内閣府(2012b)²⁹を参考として、表
 Ⅲ 3.10を用いた(ランクB、Cの崩壊確率はゼロ)。

表Ⅲ 3.10	危険度に対す	る崩壊確率29

ランク	崩壊確率		
А	10%		

④震度別被害率について、全壊率は中央防災会議(2006)²⁵、半壊率は静岡県(2001)
 ³⁸を参考として表Ⅲ 3.11の被害率を用いた。

表 II 3.11 震度別被害率25、38

震度階級	~震度 4	震度5弱	震度5強	震度6弱	震度6強	震度 7
全壊率	0%	6%	12%	18%	24%	30%
半壊率	0%	14%	28%	42%	56%	70%

⑤被害棟数は内閣府(2012b)²⁹を参考として、次の式により算定した。

全壊棟数=危険箇所内人家戸数×崩壊確率×全壊率

× (1-広島県の急傾斜地崩壊危険所整備率)

半壞棟数=危険箇所内人家戸数×崩壊確率×半壊率

×(1-広島県の急傾斜地崩壊危険所整備率)

オ 津波による建物被害の算定手法

津波による建物被害は、人口集中地区とそれ以外の地区で浸水深別・建物構造別被害 率を設定して算定する手法により、10m メッシュごとに全壊棟数、半壊棟数を算定し、 250m メッシュ単位に集計した。

なお、津波による建物被害は、「構造物が機能する場合」と「構造物が機能しない場 合」の想定結果から、震度による堤防機能率を考慮した被害想定を行った。

図Ⅲ 3.9 津波による被害棟数の算定フロー

³⁸ 静岡県(2001):第3次地震被害想定結果.

①建物棟数データと津波浸水深データから、250m メッシュごとの建物分布、10 メッシュごとの浸水深の分布を整理した。このとき、浸水深データは、津波浸水予測における構造物が機能しない場合(震度6弱以上の地域では1/3の海岸堤防構造物が破損、 震度6強以上の地域では1/2が破損すると想定^{※1}=震度6弱以上の地域を対象)及び 構造物が機能する場合の2とおりの計算結果を用い、次頁に示す堤防機能率により 250mメッシュ単位で按分処理を行った。

※1 河川堤防のような土堤は、25%の高さは機能すると想定

- ②人口集中地区^{※2} とそれ以外の地区で浸水深別・建物構造別の被害率(図Ⅲ 3.10)を 乗じ、全壊棟数、半壊棟数を算定した。
 - ※2 人口密度が 4,000 人/km²以上の基本単位区等が市区町村区域内で互いに隣接して人口が 5,000人以上となる地区
- ③津波による建物全壊・半壊棟数は、「構造物が機能する場合」と「構造物が機能しない場合」のそれぞれで計算した被害想定結果を基に堤防機能率を考慮した堤防機能低下ケースの計算を行い、被害想定結果として採用した。堤防機能低下ケースの計算式は、次のとおりである。

図皿 3.10(1) 津波浸水深ごとの建物被害率(人口集中地区)²⁹

図Ⅲ 3.10 (2) 津波浸水深ごとの建物被害率(人口集中地区以外)²⁹

カ 地震火災による建物被害の算定手法

(7) 風速の設定

地震火災による建物被害は、風速による影響で被害量が変わることから、広島県の 風速の観測記録を分析し、実態に合った風速を設定・採用した。

a 風速の設定条件

風速は、県内で風速の大きい広島気象台の値を用いることとした。
 採用する観測記録はアメダス 10 分値がデータ形式で入手できる 16 年分とした。
 県内の気象台及び山地部の測候所との比較結果を表Ⅲ 3.12に示す。

表皿 3.12 気象台・測候所における平均風速の傾向(m/s)

季節	広島気象台	福山気象台	呉気象台	庄原測候所	加計測候所
春 (3~5月)	3.8	1.6	2.0	1.1	1.0
夏(6~8月)	3.4	1.5	1.9	0.7	0.8
秋 (9~11月)	4.1	1.4	2.1	0.6	0.7
冬 (12~2月)	3.8	1.6	2.4	1.0	0.7

図Ⅲ 3.11 広島県内の気象台・測候所³⁹

³⁹ 気象庁(2013):過去の気象データ検索、気象庁ホームページ.
b 統計処理方法

①平均風速

平均風速は、10 分間平均風速を 16 年分収集し、その 16 年分の平均値に対して 「10 分間平均風速の標準偏差 σ×2」を加えた値を採用する。(2 σ を加えることで 正規分布の 95.45%値となる)

②最大風速

最大風速は、日別最大風速を整理し、この日別最大風速の 16 年分の平均値に対し て「10 分間平均風速の標準偏差 σ×2」を加えた値を採用した。

c 季別風速の設定

統計処理した結果は表Ⅲ 3.13、表Ⅲ 3.14のとおりとなった。

	平均	標準偏差	平均+2σ
春 (3~5月)	3.753	2.056	7.864
夏 (6~8月)	3.419	1.808	7.035
秋 (9~11月)	4.088	2.049	8.186
冬 (12~2月)	3.803	2.020	7.843

表Ⅲ 3.13 広島気象台 平均風速 (m/s)

表 II 3.14 広島気象台 最大風速 (m/s)

	平均	標準偏差	平均+2σ
春 (3~5月)	7.814	2.024	11.863
夏(6~8月)	6.942	1.890	10.722
秋 (9~11月)	7.815	2.173	12.161
冬 (12~2月)	7.853	1.688	11. 230

d 想定シーン別の設定

採用した風速を想定シーン別に整理した。

表 II 3.15 想定シーン別採用値

想定シーン	平均風速	最大風速
冬・深夜	8m/s	11 m/s
冬・18時	8m/s	11m/s
夏・12時	7m/s	11m/s

(イ) 地震火災による建物被害の算定手法

地震火災による建物被害は、出火件数と消防力の運用等を用いて焼失棟数を算定す る手法により、焼失棟数を算定した。

また、被害想定は、季節・時刻、風速によって結果が異なることから、各条件で被 害想定を行った。

図Ⅲ 3.12 地震火災による焼失棟数の算定フロー

- ①揺れによる建物被害を算定した 250m メッシュごとの建物棟数及び全壊率を整 理した。
- ②内閣府(2012b)²⁹による震度別用途別出火率(季節時間別)に基づき、出火件 数を算定した。
 - ・出火要因の内、最も影響の大きい火気器具、電熱器具からの出火を対象
 - ・出火要因別に次の a から c に示す手法で出火件数を算定

a) 建物倒壊しない場合の火気器具・電熱器具からの出火

- ・建物倒壊しない場合の出火は、震度別用途別出火率(季節時間別) (表Ⅲ 3.16)を設定した。
- ・算定式は次のとおりとした。

全出火件数=震度別用途別出火率×用途別建物棟数

表 II 3.16 震度別用途別出火率(季節時間帯別)29

STAR K					
	震度5弱	震度5強	震度 6 弱	震度 6 強	震度 7
飲食店	0.0003%	0.0009%	0.0047%	0.0188%	0.066%
物販店	0.0001%	0.0004%	0.0013%	0.0059%	0.051%
病院	0.0002%	0.0004%	0.0014%	0.0075%	0.118%
診療所	0.0000%	0.0002%	0.0005%	0.0018%	0.007%
事務所等その他事務所	0.0000%	0.0001%	0.0004%	0.0020%	0.011%
住宅・共同住宅	0.0002%	0.0006%	0.0021%	0.0072%	0.026%

冬深夜

夏12時

	震度5弱	震度5強	震度6弱	震度6強	震度 7
飲食店	0.0029%	0.0076%	0.0346%	0.1152%	0.331%
物販店	0.0005%	0.0015%	0.0071%	0.0253%	0.123%
病院	0.0009%	0.0016%	0.0070%	0.0296%	0.313%
診療所	0.0004%	0.0004%	0.0016%	0.0050%	0.023%
事務所等その他事務所	0.0005%	0.0017%	0.0083%	0.0313%	0.183%
住宅・共同住宅	0.0003%	0.0003%	0.0013%	0.0043%	0.021%

冬18時

	震度5弱	震度5強	震度6弱	震度6強	震度 7
飲食店	0.0047%	0.0157%	0.0541%	0.1657%	0.509%
物販店	0.0007%	0.0022%	0.0085%	0.0302%	0.158%
病院	0.0008%	0.0017%	0.0072%	0.0372%	0.529%
診療所	0.0004%	0.0010%	0.0036%	0.0130%	0.041%
事務所等その他事務所	0.0003%	0.0012%	0.0052%	0.0216%	0.177%
住宅・共同住宅	0.0010%	0.0034%	0.0109%	0.0351%	0.115%

- b)建物倒壊した場合の火気器具・電熱器具からの出火 内閣府(2012b)²⁹を参考に次のように設定した。
 - ・阪神・淡路大震災時の事例から、冬における倒壊建物 1 棟当たり出火率を 0.0449%とし、さらに時刻別に補正した。
 - ・暖房器具類を使わない夏の場合には、倒壊建物 1 棟当たり出火率を 0.0286%と した。
 - ・時刻補正係数は1.0(深夜)、2.2(12時)、3.4(18時)とした。
 - 建物倒壊した場合の全出火件数

=建物倒壊棟数×季節時間帯別の倒壊建物1棟当たり出火率

季節時間帯別の倒壊建物1棟当たり出火率:

0.0449%(冬深夜)、0.0629%(夏12時)、0.153%(冬18時)

- c) 電気機器・配線からの出火
 - ・電気機器・配線からの出火は内閣府(2012b)²⁹を参考に建物全壊の影響を 強く受けると考え、全壊棟数との関係により設定した。

<u>電気機器からの出火件数=0.044%×全壊棟数</u> 配線からの出火件数=0.030%×全壊棟数

③内閣府(2012b)²⁹による初期消火成功率から、炎上出火件数を算定した。

住宅の初期消火成功率は、内閣府(2012b)²⁹では平成23年「東京都消防庁出火危険度測定」を元に表III 3.17のように設定しており、この値を採用した。

表III 3.17 震度別初期消火成功率²⁹

震度階級	6 弱以下	6 強	7
初期消火成功率	67%	30%	15%

炎上出火件数=(1-初期消火成功率)×(全出火件数)

④出火点を配置した。

- ・出火点の配置は、和歌山県(2006)³¹を参考として行った。
- ・メッシュごとに求められた炎上出火件数の存在確率(メッシュごとの小数値)
 を大きい順に並べ替えた。
- ・炎上出火件数の存在確率が大きい方から順に値を足し合わせていき、1を超えるところまでを1つのグループとする。このグループによる炎上出火件数は1件強となるため、このグループ内に1箇所の出火点を配置するものとし、このグループ内の最も大きい値のメッシュに出火点を配置した。
- ・それ以降のメッシュについても同様に、炎上出火件数の和が1を超えるごとに グルーピングし、それぞれ出火点を配置した。

⑤消防力を評価し、残出火件数を算定した。

- ・消防力の運用の効果は、中央防災会議(2003)⁴⁰を参考として算定した。
- ・出火後消防車が現場に到着するまでの平均時間を19分とした中央防災会議
 (2003)を参考に、本調査においても19分と仮定した(火災覚知まで8分、出動準備に3分、かけつけ時間に8分を要する)。
- ・19 分で燃え上がる広さ(火面周長)を求め、消防車1台当たりの消火可能な火 面周長⁴¹から、消火が可能か否かを判定した。

火面周長=
$$\pi\sqrt{1/2(r1^2+r3^2)}$$
+ $\pi\sqrt{1/2(r2^2+r3^2)}$

※ y1から y3の長さは、東京消防庁(2001)⁴¹に基づき算定

図 二 3.13 火面周長の考え方

⁴⁰ 中央防災会議(2003):東南海、南海地震等に係る専門調査会(第10回)参考資料.

⁴¹ 東京消防庁(2001):地震火災に関する地域の防災性能評価手法の開発と活用方法(案).

- ・ただし、市内の各出火点に駆けつけることのできる消防車の合計数は、市が所 有する消防車台数を上限とした。
- ・消防力1口当たりの消火可能火面周長は10mとする。消防ポンプ自動車等は3 ロ、小型動力ポンプ積載車は1口として消火可能火面周長を設定した。
- 市内で火面周長が短い炎上出火点から順に消防力を投入して、消防力によって 消火可能な件数を算定した。
- ・市で消火できなかった炎上出火点は、残出火点として焼失棟数の算定を行った。

表亚 3.18 消火可能火面周長 31

種別	消火可能火面周長
消防ポンプ車等 (普通消防ポンプ自動車、水槽付消防ポンプ自動車、は しご付消防ポンプ自動車、屈折はしご付消防ポンプ自動 車、化学消防ポンプ自動車)	30m
小型動力ポンプ積載車	10m

⑥全建物及び木造建物の分布から不燃領域率及び焼失率を算定した。

・不燃領域率は、三重県(2005)⁴²を参考に、木造建物の棟数比と木造建物棟数 密度から設定した。

<u>F=1.189-0.604×a-0.00713×b</u> (ただし、Fは1.0を超えない)

F:不燃領域率

- a:木造建物棟数比=木造建物棟数/全建物棟数
- b:木造建物密度=木造建物棟数/メッシュの面積(ha)
- ・焼失率は、大阪府(1997)⁴³を参考とし、阪神・淡路大震災の被害実績(図
 Ⅲ 3.15)や建設省総合技術開発プロジェクトによるシミュレーション結果から求められた不燃領域との関係式を用いた(図Ⅲ 3.14)。
- ・図Ⅲ 3.15は阪神・淡路大震災と同様の風速 3m/s の場合である。風速の変 化に基づく焼失率の変化は、中央防災会議(2007)⁴⁴での設定値を参考に次の とおり設定した。

平均風速 7,8m/s:3m/sの2倍の焼失率を採用(焼失率100%は超えない) 最大風速 11m/s:8m/sと同じ

⁴² 三重県(2005):三重県地域防災計画被害想定調査報告書.

⁴³ 大阪府(1997):大阪府地震被害想定調査報告書.

⁴⁴ 中央防災会議(2007):東南海、南海地震等に関する専門調査会.

図III 3.14 不燃領域率と焼失率の関係(風速 3m/s)

図Ⅲ 3.15 阪神・淡路大震災時の延焼火災の町丁目別不燃領域率と焼失率の関係43

⑦焼失棟数を算定した。

- ・消防でも消火できなかった残出火点の属するメッシュを対象に、東京消防庁 式(2001)⁴¹を用いて延焼シミュレーションを行い、6時間後の延焼エリア を算定した。
- ・延焼エリア内の焼失棟数は、図Ⅲ 3.14から求まるメッシュの不燃領域率に 応じた焼失率を低層建物数に掛け合わせることで算定した。

焼失棟数=低層建物数(木造建物+1、2階の非木造建物)×焼失率/100

キ屋外転倒、落下物の発生

(ア) ブロック塀等・自動販売機の転倒数

建物当たりのブロック塀等の存在割合からブロック塀、石塀等の分布数を求めると ともに、宮城県沖地震における地震動の強さと被害率との関係式を用いてブロック塀 等及び自動販売機の転倒発生件数を算定した。

a ブロック塀等の転倒数

図Ⅲ 3.16 ブロック塀等の転倒発生件数の算定フロー²⁹

①ブロック塀の分布については、本市の統計がないため、内閣府(2012b)²⁹に 示される木造住宅棟数との関係を用いて推定した。

表Ⅲ 3.19 塀件数比率29

ブロック塀	石塀	コンクリート塀
0.16×(木造住宅棟数)	0.035×(木造住宅棟数)	0.036×(木造住宅棟数)

②倒壊対象となる塀の割合は、東京都(1997)⁴⁵の手法により算定した。

- ・東京都(1997)⁴⁵では、塀の種類別に危険度調査が行われ、外見調査の結果から特に改善が必要ない塀の比率が設定されている。
- ・東京都(1997)⁴⁵に基づき、このうちの半分は改訂耐震基準を十分満たしており、倒壊の危険性はないものとした。

表Ⅲ 3.20 倒壊対象となる塀の割合45

塀の種類	外見調査の結果から特に 改善が必要ない塀の比率(A)	倒壊対象となる割合 (1-0.5A)
ブロック塀	0. 500	0.750
石塀	0.362	0.819
コンクリート塀	0.576	0.712

③被害率

・東京都(1997)⁴⁵に示される宮城県沖地震時の地震動の強さ(加速度)とブロック塀等の被害率との関係実態に基づき、設定した。

ブロック塀被害率(%) = $-12.6 + 0.07 \times$ (地表最大加速度) (gal) 石塀被害率(%) = $-26.6 + 0.168 \times$ (地表最大加速度) (gal) コンクリート塀被害率(%) = $-12.6 + 0.07 \times$ (地表最大加速度) (gal)

・ここで、「地表最大加速度」は、メッシュ別地表最大加速度の人口重み付平均 値を用いた。

⁴⁵ 東京都(1997):東京における直下地震の被害想定に関する調査報告書(被害想定手法編).

b 自動販売機の転倒数

図Ⅲ 3.17 自動販売機の転倒数算定フロー29

①自動販売機台数(市)の算定

- ・市の自動販売機台数は、次の式により算定した。
- 全国の自動販売機台数は、5,084,340 台である。(2011 年末時点、日本自動販売機工業会調べ)

(市の自動販売機台数)

= (全国自動販売機台数) × { (市夜間人口) + (市昼間人口) } ÷ { (全国夜間人口) + (全国昼間人口) }

②転倒対象となる自動販売機の割合の設定

- ・転倒対象となる自動販売機の割合は、屋外設置比率(約6割^{*1})と転倒防止措 置未対応率(約1割^{*2})から設定した。
- ※1 清涼飲料水メーカーへのヒアリング結果
- ※2 自動販売機転倒防止対策の進捗状況を踏まえて設定

③被害率

・被害率は、阪神・淡路大震災時の(概ね震度 6 弱以上の地域における)被害実 態から、次の式により、設定した。

25,880 台 / 124,100 台 = 約 20.9 %

(神戸市、西宮市、尼崎市、宝塚市、芦屋市、淡路島の全市町:全数調査)

(イ) 屋外落下物の発生

全壊する建物及び震度 6 弱以上の地域における 3 階建て以上の非木造建物の内落下 危険物を有する建物から、落下物の発生が想定される建物棟数を算定した。

図皿 3.18 屋外落下物が生じる建物棟数の算定フロー²⁹

a 落下危険性のある屋外落下物を保有する建物棟数比率

落下危険性のある屋外落下物を保有する建物棟数比率は、東京都(1997)⁴⁵の調査 結果をもとに、対象となる建物の築年別に設定した。

表Ⅲ 3.21 落下危険性のある屋外落下物を保有する建物棟数比率45

建築年代	飛散物 (窓ガラス、壁面等)	非飛散物 (吊り看板等)
~1970年	30%	17%
1971年~1980年	6%	8%
1981 年~	0%	3%

b 建物未改修率

建物改修(落下対策実施)率は、東京都(1997)⁴⁵の平均改修率 87%を用い、13% を未改修率として設定した。

未改修の建物において、屋外落下物が発生するものとした。

c 落下率

落下物の発生が想定される建物の内、落下が生じる建物の割合(落下率)には、 東京都(1997)⁴⁵で設定したブロック塀の被害率と同じ式を用いた。

(落下率) (%) = -12.6 + 0.07 × (地表最大加速度) (gal)

(2) 人的被害

地震動、津波及び間接的に発生する土砂災害や火災等に起因する人的被害を想定した。 人的被害の想定に当たっては、その直接的な要因となる建物倒壊、土砂災害、津波、火 災、屋内収容物移動・転倒や屋内落下物及び屋外落下物について、要因別に死者数及び負 傷者数等を算定した。

ア 人口の現況

表Ⅲ 3.22に平成22年度時点の昼夜間人口を示す。

区域	昼間人口	夜間人口	昼夜間
	(人)	(人)	人口比率(%)
広島市	1, 198, 347	1, 173, 843	102.1

表 3.22 人口の現況46

⁴⁶ 総務省統計局(2013):平成 22 年国勢調査.

イ 人口データの設定

人的被害は、被害の様相が異なる特徴的な深夜、昼 12 時、夕方 18 時の 3 ケースで被 害想定を行った。

人的被害想定に使用する3ケースの人口データは、平成22年国勢調査による地域メッシュ統計データの夜間人口及び昼間人口を基本とし、時刻別人口は、和歌山県(2006)³¹を参考として次のように設定した。

表 〒3.23 時刻別住宅滞留人口及びその他施設滞留人口の算定手法 31

時刻	住宅滞留人口及びその他施設滞留人口	移動中 人口比率
深夜	 ・全人口[人]=夜間人口[人] ・住宅滞留人口[人]=屋内人口[人]=夜間人口[人] ・移動中人口[人]=0[人] 	0%
昼 12 時	 ・全人口[人]=昼間人口[人] ・屋内人口[人]=0.95×昼間人口[人] ・住宅滞留人口[人]=0.35×夜間人口[人] ・その他施設滞留人口[人]=屋内人口[人]-住宅滞留人口[人] ・移動中人口[人]=0.05×全人口[人] 	5%
夕 18 時	 ・全人口[人]=(2×夜間人口[人]+3×昼間人口[人])/5 ・屋内人口[人]=0.90×{(2×夜間人口[人]+3×昼間人口[人])/5} ・住宅滞留人口[人]=0.61×夜間人口[人] ・その他施設滞留人口[人]=屋内人口[人]-住宅滞留人口[人] ・移動中人口[人]=0.10×全人口[人] 	10%

(7) 構造別滞留人口(住宅)

木造住家と非木造住家の棟数を基に、木造住宅滞留人口と非木造住宅滞留人口を算定した。

木造住宅滞留人口

=住宅滞留人口×{木造住家棟数/(木造住家棟数+非木造住家棟数)} 非木造住宅滞留人口

=住宅滞留人口×{非木造住家棟数/(木造住家棟数+非木造住家棟数)}

(イ) 構造別滞留人口 (その他施設)

木造非住家と非木造非住家の棟数を基に、木造非住宅滞留人口と非木造非住宅滞留人口を算定した。

木造非住宅滞留人口=その他施設滞留人口

×{木造非住家棟数 / (木造非住家棟数+非木造非住家棟数)} 非木造非住宅滞留人口=その他施設滞留人口

×{非木造非住家棟数 / (木造非住家棟数+非木造非住家棟数) }

(ウ) 構造別滞留人口(合計)

次の式により、木造建物内滞留人口と非木造建物内滞留人口を算定した。

木造建物内滞留人口=木造住宅滞留人口+木造非住宅滞留人口 非木造建物内滞留人口=非木造住宅滞留人口+非木造非住宅滞留人口

ウ 建物倒壊による人的被害

建物倒壊による人的被害は、内閣府(2012b)²⁹の手法に基づき、揺れによる建物被害 と人口データから死者数、負傷者数、重傷者数、軽傷者数^{※1}を算定した。

※1 軽傷者数=負傷者数-重傷者数

(7) 建物倒壊による死者数

300 人以上の死者が発生した近年の 5 地震(鳥取地震、東南海地震、南海地震、福井地震、阪神・淡路大震災)の被害事例から算定した全壊棟数と死者数との関係を基 に算定した。

図 🗉 3.19 死者数の算定フロー²⁹

算定に用いた式は、次のとおりである。

(死者数) = (木造建物内死者数) + (非木造建物内死者数)

(木造建物内死者数)

= t_w×(市町村別の揺れによる木造全壊棟数)×(木造建物内滞留率)

(非木造建物内死者数)

= t_n×(市町村別の揺れによる非木造全壊棟数)×(非木造建物内滞留率)

(木造建物内滞留率)

= (発生時刻の木造建物内滞留人口)÷(深夜の木造建物内滞留人口)

(非木造建物内滞留率)

= (発生時刻の非木造建物内滞留人口)÷(深夜の非木造建物内滞留人口)

 $t_{\rm w} = 0.0676$

t_n = 0.00840 × (P_{w0} / B_n ÷ B_w / P_{w0})
 t_w:木造建物の倒壊による標準式の死者率
 t_n:非木造建物の倒壊による標準式の死者率
 P_{w0}:夜間人口(木造) P_{n0}:夜間人口(非木造)
 B_w:建物棟数(木造) B_n:建物棟数(非木造)

(イ) 建物倒壊による負傷者数

建物倒壊による負傷者数は、近年の鳥取県西部地震、新潟県中越地震、新潟県中越 沖地震、能登半島地震、岩手・宮城内陸地震の主な被災市町村、東北地方太平洋沖地 震の内陸被災市町村の建物被害数(全壊棟数、全半壊棟数)と負傷者数・重傷者数と の関係を基に算定した。

図Ⅲ 3.20 建物倒壊による負傷者数(重傷者数と軽傷者数)の算定フロー²⁹

算定に用いた式は、次のとおりである。

(木造建物における負傷者数)

= $0.177^{*1} \times ($ 揺れによる木造全半壊棟数 $) \times \alpha_{*} \times \beta_{*}$ (非木造建物における負傷者数)

= 0.177^{※1}×(揺れによる非木造全半壊棟数)×α_n×β_n

※1 建物倒壊による標準式の負傷者率

- a_w (木造建物内滞留率)
 - = (発生時刻の木造建物内滞留人口)÷(深夜の木造建物内滞留人口)
- a_n (非木造建物内滞留率)
 - = (発生時刻の非木造建物内滞留人口) ÷ (深夜の非木造建物内滞留人口)
- β_{*}(建物1棟当たり滞留人口の全建物に対する木造建物の比率(時間帯別)
 - = (発生時刻の木造建物1棟当たりの滞留人口)
 - / (発生時刻の全建物1棟当たりの滞留人口)
- β_n(建物1棟当たり滞留人口の全建物に対する非木造建物の比率(時間帯別))
 - = (発生時刻の非木造建物1棟当たりの滞留人口)

/ (発生時刻の全建物1棟当たりの滞留人口)

(ウ) 建物倒壊による重傷者数

重傷者数は、負傷者数の算定方法に順じ、重傷者率を適用して算定した。

図Ⅲ 3.21 建物倒壊による重傷者数の算定フロー²⁹

算定に用いた式は、次のとおりである。

(木造建物における重傷者数)

=0.100^{※2}× (揺れによる木造全壊棟数) × $\alpha_w \times \beta_w$ (非木造建物における重傷者数)

 $=0.100^{*2}$ × (揺れによる非木造全壊棟数) × a_n × β_n

※2 建物倒壊による標準式の重傷者率

 α_w (木造建物内滞留率)

= (発生時刻の木造建物内滞留人口) ÷ (深夜の木造建物内滞留人口)

- a_n(非木造建物内滞留率)
 - = (発生時刻の非木造建物内滞留人口)÷(深夜の非木造建物内滞留人口)
- β_{*}(建物1棟当たり滞留人口の全建物に対する木造建物の比率(時間帯別))

= (発生時刻の木造建物1棟当たりの滞留人口)

/ (発生時刻の全建物1棟当たりの滞留人口)

β_n(建物1棟当たり滞留人口の全建物に対する非木造建物の比率(時間帯別))

= (発生時刻の非木造建物1棟当たりの滞留人口)

/ (発生時刻の全建物1棟当たりの滞留人口)

エ 土砂災害による人的被害

土砂災害による人的被害は、土砂災害による建物被害と人口データから死者数、重傷 者数、軽傷者数を算定した。

なお、対象とした土砂災害は、人家等に影響を及ぼす危険箇所が抽出されている急傾 斜地崩壊危険箇所及び地すべり危険箇所とした。

山腹崩壊危険地区は、急傾斜地崩壊危険箇所、地すべり危険箇所と重複していることから、対象から除外した。

土砂災害に伴う人的被害は、東京都防災会議(1991)⁴⁷の手法に従い、1967 年から 1981 年までの崖崩れの被害実態から求められた、被害棟数と死者数・負傷者数との関係 式により、算定した。

なお、内閣府(2012b)²⁹に基づき、負傷者数は死者数の1.25倍、重傷者数は負傷者数の1/2倍とした。

(土砂災害による死者数)

=0.098×(土砂災害による大破棟数)×0.7×(木造・非木造建物内滞留人口比率) (土砂災害による負傷者数)

=1.25×土砂災害による死者数

(土砂災害による重傷者数)

= (土砂災害による負傷者数)/2

(土砂災害による軽傷者数)

= (土砂災害による負傷者数) - (土砂災害による重傷者数)

木造・非木造建物内滞留人口比率は、内閣府(2012b)²⁹に基づいて次の式のとおりとし、木造・非木造建物内滞留人口の24時間平均は、深夜と昼12時の平均値とした。

(木造建物内滞留人口比率)

=(発生時刻の木造建物内滞留人口)÷(木造建物内滞留人口の24時間平均)(非木造建物内滞留人口比率)

= (発生時刻の非木造建物内滞留人口)÷(非木造建物内滞留人口の24時間平均)

47 東京都防災会議(1991):東京における地震被害の想定に関する調査研究.

オ 津波による人的被害

津波による人的被害は、内閣府(2012b)²⁹の手法に基づき、津波に対する避難意識が 高い地域と低い地域を考慮した浸水エリア内における滞留人口との関係から求める手法 により死者数、負傷者数(重傷者数、軽傷者数)を算定した。

図Ⅲ 3.22 津波による死者数、負傷者数(重傷者数、軽傷者数)算定フロー29

(7) 人的被害の算定方法

津波浸水域において津波が到達する時間(浸水深 30cm 以上)までに避難が完了でき なかった者を津波に巻き込まれたものとし、そこでの浸水深をもとに死亡か負傷かを 判定した。

避難行動の想定に当たっては、①避難行動(避難の有無、避難開始時期)、②津波 到達時間までの避難完了可否、③津波に巻き込まれた場合の死者発生率を考慮した。

なお、揺れによる建物倒壊に伴う自力脱出困難者は津波からの避難ができないもの とした。

また、津波による人的被害は、「構造物が機能する場合」と「構造物が機能し ない場合」のそれぞれで計算した被害想定結果を基に堤防機能率を考慮した堤防 機能低下ケースの計算を行い、被害想定結果として採用した。堤防機能低下ケー スの計算式は、津波による建物被害と同じである。(内閣府(2012b)²⁹)

(イ) 避難行動の違い(避難の有無、避難開始時期)

津波に対する避難行動の違いは、地域住民の意識によって変化する。

本調査の想定では、内閣府の「南海トラフの巨大地震モデル検討会」が示した東日本大震災や日本海中部地震等の過去の災害事例を参考とした 4 つの避難パターンの内、本市の過去の津波災害事例の少なさなどを考慮し、早期避難者率が低い場合(地震発生後すぐに避難する者の割合を 20%、避難するが、すぐには避難しない者の割合を 50%、切迫避難^{**}あるいは避難しない者の割合 30%)と設定し、被害想定を行った。

※ 切迫避難:揺れがおさまった後、すぐには避難せず、なんらかの行動をしている最中に津波が迫って来てからとる避難行動

	避難行動別の比率		
	避難する		
	すぐに避難する (直行避難)	避難するがすぐには避難しない(用事後避難)	切迫避難あるいは 避難しない
 ①全員が発生後すぐに避難を開始した場合 (避難開始迅速化) 	100%	0%	0%
②早期避難者比率が高く、さらに 津波情報の伝達や避難の呼びか けが効果的に行われた場合 (早期避難率高+呼びかけ)	70% (※ 1)	30% (※ 2)	0% (※ 3)
③早期避難者比率が高い場合 (早期避難率高)	70% (※ 1)	20% (※ 2)	10% (※ 4)
④早期避難者比率が低い場合 (早期避難率低)	20% (※ 5)	50% (※ 2)	30% (※ 6)

表 田 3.24 避難の有無、避難開始時期の設定29

- ※1 すぐに避難した人の割合が最も高い市で約 67%であった。また、従来の被害想定では北海道南西沖 地震の事例から意識の高いケースとして 70%としている。これらを踏まえて、従来想定どおりの 70%と設定
- ※2 全体から「すぐに避難する」+「切迫避難あるいは避難しない」の割合を引いた数値として設定
- ※3 津波情報や避難の呼びかけを見聞きしている中でそれをもって避難のきっかけとなった場合、切迫 避難の割合が一番低い市で 0%である。また、従来の被害想定では意識が高い場合に 2%としている。 これらを踏まえ 0%と設定
- ※4 従来の被害想定では意識が高い場合に避難しない人の割合を 2%としているが、東日本大震災では意 識の高い地域でも 6.5%もの人が避難しなかった(死者含む)ことを踏まえて設定
- ※5 すぐに避難した人の割合が最も低い市で約 35%であった。また、従来の被害想定では日本海中部地 震の事例から意識の低いケースとして 20%としている。この市は避難意識の高い地域と考えられる が、それでも予想を超えて津波浸水の被害を受けた地区が多いこと等もあり、早期避難率は低い。 他の地域は相対的により意識の低い地域が多いと考えられることから、以上を踏まえて、従来想定 どおりの 20%と設定
- ※6 切迫避難(死者含む)の割合が高い市で約25%~27%であった。また、従来の被害想定では意識が低い場合に32%としている。これらを踏まえて30%と設定

(ウ) 避難未完了率

発災時の所在地から安全な場所まで避難完了できない人の割合(避難未完了率)に ついては次の考え方で算定した。

【避難判定方法(図Ⅲ 3.23参照)】

a 要避難メッシュの特定

最大津波浸水深が30cm以上となる要避難メッシュを特定する。

b 避難先メッシュの設定

各要避難メッシュ(避難元メッシュ)から最短距離にあり、かつ避難元メッシュ よりも津波浸水深 1cm 到達時間が長い津波浸水深 30cm 未満の避難先メッシュを特定 する。

c 避難距離の算定

メッシュ中心間の直線距離の1.5倍を避難距離とする(東日本大震災の実績)。

d 避難完了所要時間の算定

各要避難メッシュについて、避難距離を避難速度(東日本大震災の実績から平均 時速 2.65km/h と設定)で除して避難完了所要時間を算定。なお、避難開始時間は、 昼間発災時は、直接避難者で発災 5 分後、用事後避難者で 15 分後とし、切迫避難者 は当該メッシュに津波が到達してから避難するものとする。

e 避難成否の判定

各要避難メッシュについて、避難先メッシュの隣接メッシュにおける浸水深 30cm 到達時間と避難先メッシュまでの避難完了所要時間を比較し、避難行動者別に避難 成否を判定する。

なお、東北地方太平洋沖地震は昼間の発生であったが、夜間発生の場合にはより 避難が遅れることが想定されるため、夜間の場合には、避難開始は昼間に比べて さらに5分準備に時間がかかると仮定するとともに、避難速度も昼間の80%に低下 するものとした。

図III 3.23 避難元メッシュ及び避難先メッシュ、隣接メッシュのイメージ²⁹

(I) 浸水深別死者率

津波に巻き込まれた際の死者率については、図Ⅲ 3.24(右図)の死者率を適用した。 なお、生存した人も全員が負傷するものと仮定し、負傷者における重傷者と軽傷者 の割合については、北海道南西沖地震における奥尻町の人的被害の事例を参考にし、 重傷者数:軽傷者数 = 34:66 とした。

図Ⅲ 3.24 津波に巻き込まれた場合の死者率

左図:越村ら(2009)⁴⁸より引用 右図:内閣府(2012b)²⁹が設定した浸水深別の死者率関数

2004 年スマトラ島沖地震津波におけるバンダ・アチェでは多くの人々が地震に伴う津波の理解 がなく、津波が見えてから避難を始めていることから、津波に対する避難意識の低い中での死者 率であると言え、逃げたが避難しきれなかったり、切迫避難あるいは避難しなかった状況に近い と推察できる。内閣府(2012b)²⁹では、越村ら(2009)⁴⁸によるバンダ・アチェでの浸水深別死者 率(左図)を参考に、右図のような津波に巻き込まれた場合の浸水深別死者率関数を検討してい る。これは浸水深 30cm 以上で死者が発生し始め、浸水深 1m では津波に巻き込まれた人のすべて が死亡すると仮定した関数である。

(オ) 高層階滞留者の考慮

津波の最大浸水深に応じてそれよりも高い高層階の滞留者は避難せずにとどまるこ とができる場合を考慮し、最大浸水深別の避難対象者を次のように設定した。

最大浸水深	避難対象者
30cm 以上 6m 未満	1、2 階滞留者が避難
6m 以上 15m 未満	1~5 階滞留者が避難
15m 以上 30m 未満	1~10 階滞留者が避難
30m 以上の場合	全員避難

表Ⅲ 3.25 最大浸水深別避難対象者29

⁴⁸ 越村俊一・行谷佑一・柳澤英明(2009):津波被害関数の構築、土木学会論文集 B、Vol.65、No.4、pp320-331.

(カ) 津波避難ビルの考慮

浸水域内に津波避難ビルが整備されているところでは、浸水域内にいる人は津波避 難ビルに逃げ込むことで助かることができるため、津波避難ビルによる人的被害軽減 効果を考慮したケースも検討した。

津波避難ビルの効果は、次のとおりとした。

- a 津波避難ビルの指定状況及び1 棟当たり収容人数は、広島市が保有するデータを 用いた。
- b 浸水域内の津波避難ビル(浸水時緊急退避施設)における収容可能人数を把握した。このとき浸水域内の津波避難ビルへの避難可能な人の最大値は、津波避難ビルの避難場所の収容可能人数(A)とした。
- c 津波到達時間が短い場合には、避難ビル最大収容人数も逃げ込めない可能性があ り、その場合の収容可能人数は次のように求めた。

収容可能人数= $\{\pi \times (避難距離 m)^2\} \times 0.5 \times 周辺人口密度 (人 / m²) … (B) ここで、避難距離(m) = <math>\{44.2 (m/分) \times 避難時間 (分)\} \div 1.5$

d (A) と(B)を比較して少ない方を最終的な津波避難ビルへの収容可能人数とした。 津波避難ビル考慮前の津波による人的被害数に対して、津波避難ビルへの収容可能 人数分だけ人的被害が軽減されるものとした。 (キ) 年齢構成を考慮した算定

津波による死傷者は、東日本大震災の実態を踏まえ、年齢構成別に死傷者数を補正 するものとした。年齢構成は、平成22年国勢調査を用いて次の式により設定した。

市区町別の人的被害補正係数

- =Σ(年齢区分別比率×年齢区分別重み係数)
- =15 歳未満人口比率× 0.34 + (15 歳~64 歳人口比率) ×0.62 + (65 歳~74 歳 人口比率) ×1.79 + 75 歳以上人口比率× 2.81
- (ク) 海水浴客の考慮

津波浸水域内の海水浴場は、夏季の海水浴客数を見込むこととする。海水浴客数は、 平成23年広島県目的別総観光客数の7、8月の海水浴客数から1日当たり海水欲客数 を採用し、津波浸水域内の滞留人口に加えた。

カ 地震火災による人的被害

火災による人的被害は、内閣府(2012b)²⁹に基づき、出火件数と屋内滞留人口比率から想定する手法により、死者数、負傷者数、重傷者数、軽傷者数を算定した。 なお、火災による人的被害は、3つの発生要因により想定した。

死者発生のシナリオ	備考
1)炎上出火家屋内からの逃げ遅れ	出火直後:突然の出火により逃げ遅れた人(揺れによる 建物倒壊を伴わない)
2) 倒壊後に焼失した家屋内の救出	出火直後:揺れによる建物被害で建物内に閉じ込められ た後に出火し、逃げられない人
困難者(生き埋め等)	延焼中 :揺れによる建物被害で家屋内に閉じ込められ た後に延焼が及び、逃げられない人
3) 延焼拡大時の逃げまどい	延焼中 : 建物内には閉じ込められていないが、避難に とどまっている間に延焼が拡大し、巻き込ま れて焼死する人

表Ⅲ 3.26 火災による死者発生要因29

- (7) 火災による死者数
 - a 逃げ遅れによる死者数 炎上出火家屋からの逃げ遅れによる死者数は、次の式により算定した。

(死者数) =0.046^{*1}×出火件数×(屋内滞留人口比率)

ここで、(屋内滞留人口比率)

= (発生時刻の屋内滞留人口) ÷ (屋内滞留人口の24時間平均)

- ※1 係数 0.046:平成 17 年~22 年の 5 年間の全国における 1 建物出火(放火を除く)当たり の死者数
- b 家屋内の死者数 家屋内の死者数は、次により算定した。

(死者数) = (全壊かつ焼失家屋内の救出困難な人)×(1-生存救出率(0.387))

ここで、

(全壊かつ焼失家屋内の救出困難な人)

= (1-早期救出可能な割合(0.72))×(全壊かつ焼失家屋内の要救助者数) (全壊かつ焼失家屋内の要救助者数)

= (建物全壊による自力脱出困難者数)×(全壊かつ焼失の棟数/全壊建物数)(建物全壊による自力脱出困難者数)

=0.117 × (揺れによる建物全壊率) × (屋内滞留人口)

c 延焼拡大時の逃げまどいによる死者数

延焼拡大時の逃げまどいによる死者数は、諸井・武村(2004)⁴⁹による関東大震 災における「火災による死者の増加傾向」に係る推定式を適用して算定した。この とき、同推定式における全潰死者数を全壊死者数と考え、図III 3.25の式を変形して 算定を行った。

⁴⁹ 諸井孝文・武村雅之(2004):関東地震(1923 年 9 月 1 日)による被害要因別死者数の推定、日本地震工学会論文集、第 4 巻、第 4 号、pp.21-45.

図Ⅲ 3.25 火災による死者の増加傾向²⁹

(注) 揺れ・液状化による建物被害と火災延焼による建物被害の重複算定の除去を行う。

(イ) 火災による負傷者数(重傷者数、軽傷者数)

a 逃げ遅れによる負傷者数(重傷者数・軽傷者数)

炎上出火家屋からの逃げ遅れによる負傷者数(重傷者数・軽傷者数)は次によ り算定した。

(出火直後の火災による重傷者数) =0.075×出火件数×(屋内滞留人口比率) (出火直後の火災による軽傷者数) =0.187×出火件数×(屋内滞留人口比率) ここで、

(屋内滞留人口比率)

= (発生時刻の屋内滞留人口)÷ (屋内滞留人口の24時間平均^{※2})

※2 滞留人口の 24 時間平均は、深夜と昼 12 時の平均値とする。

b 延焼拡大時の逃げまどいによる負傷者数(重傷者数、軽傷者数)

延焼拡大時の逃げまどいによる負傷者数(重傷者数・軽傷者数)は次の式により 算定した。

(延焼火災による重傷者数) =0.0053×焼失人口 (延焼火災による軽傷者数) =0.0136×焼失人口 ここで、

焼失人口=(焼失率)×(発生時刻の滞留人口)

キ 屋内収容物移動・転倒、屋内落下物による人的被害

屋内収容物移動・転倒、屋内落下物による人的被害は、震度分布や人ロデータ、転倒 防止措置の実施状況に応じた被害率等から死者数、負傷者数、重傷者数、軽傷者数^{*1}を 算定した。

なお、屋内収容物移動・転倒、屋内落下物による死傷者数は、揺れによる建物被害に 基づく人的被害の内数として取り扱った。

※1 軽傷者数=負傷者数-重傷者数

屋内収容物移動・転倒、屋内落下物による人的被害は、木造建物、非木造建物の震度 別死傷者率に対して補正係数を乗じて算定した。

算定に当たっては、阪神・淡路大震災当時の阪神地区の事例を参考とした上で、当時の阪神地区と本市の転倒防止実施率の違いによる被害低減状況を補正した。本市の転倒防止率は、広島県(2011a)⁵⁰を採用した。

さらに震度別死傷者率に対して屋内滞留の時間変化を考慮し、時間帯別補正係数(深 夜:1.0、12時・18時:0.82)を乗じて危険性の違いを補正した。

なお、転倒防止措置ありの場合は、ない場合の転倒率の 0.23 倍とした(北浦ら (1996)⁵¹)。

家具転倒防止実施率の補正係数※2(阪神・淡路大震災当時の阪神地区と本市の比)

※2 補正係数={ (100-30.1) +0.23×30.1}/{ (100-5) +0.23×5} = 0.80

表 II 3.27 家具転倒防止実施率

阪神・淡路大震災時の阪神地区の転倒防止実施率44	5%
広島県の転倒防止実施率50	30.1%

⁵⁰ 広島県(2011a):防災意識に関するアンケート調査報告書.

⁵¹ 北浦かほる・萩原美智子・山崎かほる(1996):居室などへの影響および怪我とその要因.

(7) 屋内収容物移動・転倒、屋内落下物による死者数

屋内収容物の移動・転倒、屋内落下物による死者数の算定の流れ及び死者率を次に 示す。

図Ⅲ 3.26 屋内転倒物による死者数の算定フロー29

震中心如	大破の場合		中破以下の場合	
辰戌陷极	木造建物	非木造建物	木造建物	非木造建物
震度7	0.314%	0.192%	0.00955%	0.000579%
震度6強	0.255%	0.156%	0.00689%	0.000471%
震度6弱	0.113%	0.0688%	0.00343%	0.000208%
震度5強	0.0235%	0%	0.000715%	0.0000433%
震度5弱	0.00264%	0%	0.0000803%	0.00000487%

表Ⅲ 3.28 (1) 屋内転倒物による死者率29

(ここで、木造大破率=木造全壊率×0.7、非木造大破率=非木造全壊率)

表 田 3.28 (2) 屋内落下物による死者率29

電中吡如	大破の場合		中破以下の場合	
展皮陷极	木造建物	非木造建物	木造建物	非木造建物
震度 7	0.0776%	0.0476%	0.00270%	0.000164%
震度6強	0.0542%	0.0351%	0.00188%	0.000121%
震度6弱	0.0249%	0.0198%	0.00087%	0.000068%
震度5強	0.0117%	0%	0.000407%	0.0000404%
震度5弱	0.00586%	0%	0.0002036%	0.00002275%

表Ⅲ 3.28 (3) 屋内ガラスによる死者率²⁹

震度階級	死者率
震度 7	0.00030%
震度6強	0.00026%
震度6弱	0.00018%
震度5強	0.00010%
震度5弱	0.000022%

(1) 屋内収容物移動・転倒、屋内落下物による負傷者数(重傷者と軽傷者) 屋内収容物の移動・転倒、屋内落下物による負傷者数の算定の流れ及び負傷者率を 以下に示す。

図Ⅲ 3.27 屋内転倒物による負傷者数の算定フロー²⁹

電在吡如	大破の場合		中破以下の場合	
展皮陷极	負傷者率	重傷者率	負傷者率	重傷者率
震度 7	3.69%	0.995%	0.112%	0.0303%
震度6強	3.00%	0.809%	0.0809%	0.0218%
震度6弱	1.32%	0.357%	0.0402%	0.0109%
震度5強	0.276%	0%	0.00839%	0.00226%
震度5弱	0.0310%	0%	0.000943%	0.000255%

表Ⅲ 3.29 (1) 屋内転倒物による負傷者率²⁹

雪庄吡纽	大破の場合		中破以下の場合	
辰戌陌极	負傷者率	重傷者率	負傷者率	重傷者率
震度 7	1.76%	0.194%	0.0613%	0.00675%
震度6強	1.23%	0.135%	0.0428%	0.004710%
震度6弱	0.566%	0.0623%	0.0197%	0.00216%
震度5強	0.266%	0%	0.00926%	0.00102%
震度5弱	0.133%	0%	0.00463%	0.000509%

表Ⅲ 3.29 (2) 屋内落下物による負傷者率29

表Ⅲ 3.29 (3) 屋内ガラス被害による負傷者率29

震度階級	負傷者率	重傷者率
震度 7	0.056%	0.0080%
震度6強	0.049%	0.0069%
震度6弱	0.034%	0.0048%
震度5強	0.019%	0.0027%
震度5弱	0.0041%	0.00058%

ク ブロック塀等の倒壊による人的被害

ブロック塀等の倒壊による人的被害は、ブロック塀等被害数から倒壊による死者率、 負傷者率、重傷者率を乗じ、屋外人口密度・発生時刻の補正を考慮し、死者数、重傷者 数、軽傷者数^{*1}を算定した。

※1 軽傷者数=負傷者数-重傷者数

(7) ブロック塀等の倒壊による人的被害

ブロック塀等の倒壊による人的被害は、1978 年宮城県沖地震時のブロック塀等の被 害件数と死傷者数との関係から求めた死傷者率を用いた、東京都(1997)⁴⁵及び静岡県 (2001)³⁸の手法を参考に算定した。

図Ⅲ 3.28 ブロック塀等の倒壊による死者数、負傷者数、重傷者数、軽傷者数の算定フロー29

表Ⅲ 3.30 死者率、負傷者率、重傷者率(=倒壊1件当たり死傷者数)²⁹

死者率	負傷者率	重傷者率
0.00116	0. 04	0.0156

さらに時刻別の屋外移動者数を考慮し、時間帯別補正を行った。

- (死者、負傷者、重傷者)
 - = (死者率、負傷者率、重傷者率) × (ブロック塀等被害件数)
 - × (時刻別移動者数) / (18 時移動者数)
 - × ((屋外人口密度)/1689.16^{**2}(人/km²))

※2 宮城県沖地震時の仙台市の屋外人口密度

(イ) 自動販売機による人的被害

自動販売機による人的被害は、内閣府(2012b)²⁹のブロック塀の倒壊による死傷者 数算定手法を用いて算定した。

ただし、ブロック塀と自動販売機の幅の違いによる死傷者率の違いを考慮すること とし、自動販売機とブロック塀の幅の平均長の比(1:12.2)によって補正した。

表Ⅲ 3.31 自動販売機の転倒による死者数、負傷者数、重傷者数、軽傷者数算定フロー²⁹

(死者数、負傷者数、重傷者数)

= (死者率、負傷者率、重傷者率) × (自動販売機被害数)

× (時刻別移動者数) / (18 時移動者数)

× ((屋外人口密度)/1689.16^{**3} (人/km²))

※3 宮城県沖地震時の仙台市の屋外人口密度

ケ 屋外落下物による人的被害

屋外落下物による人的被害は、屋外落下物及び窓ガラスの屋外落下による死者率、負 傷者率、重傷者率から死者数、負傷者数、重傷者数、軽傷者数^{*1}を算定した。

※1 軽傷者数=負傷者数-重傷者数

図Ⅲ 3.29 屋外落下物による死者数、負傷者数、重傷者数、軽傷者数の算定フロー²⁹

屋外落下物及び窓ガラスの屋外落下による死傷者率は、宮城県沖地震(1978)時の落 下物による被害事例を基に算定した。

(死者、負傷者、重傷者)

= (死者率、負傷者率、重傷者率

× { (落下危険性のある落下物を保有する建物棟数) / (建物棟数)

× (時刻別移動者数) } × ((屋外人口密度) / 1689.16^{**2} (人/km²))

※2 宮城県沖地震時の仙台市の屋外人口密度
表Ⅲ 3.32 屋外落下物による死傷者率(=死傷者数÷屋外人口)²⁹

震度階級※	死者率	負傷者率	重傷者率
震度 7	0.005043%	1.69%	0.0816%
震度6強	0.00388%	1.21%	0.0624%
震度6弱	0.00239%	0.700%	0.0383%
震度5強	0.000604%	0. 0893%	0.00945%
震度5弱	0%	0%	0%
震度4以下	0%	0%	0%

注:東京消防庁火災予防審議会(2005)⁵²における屋外落下物(壁面落下)と屋外ガラス被害による死者率 の合算値

※ 震度7を計測震度6.5相当、震度6強以下を各震度階級の計測震度の中間値として内挿補間する

⁵² 東京消防庁火災予防審議会(2005):東京都第16期火災予防審議会答申 地震時における人口密集地域の災害危険要因の解明と 消防対策について.

(3) ライフライン施設被害

ライフラインとは、上水道、下水道、電力、通信、ガス等の生活に必要不可欠なインフ ラ設備のことをいい、建物のように独立した構造物でなく、管路網、通信網などのネット ワークで機能するものである。

ライフラインの被害は、住民の生活に密接に関係していることから、施設被害を算定す るとともに、生活への支障を定量的に把握するため断水や下水道機能支障などを算定した。

なお、浄水場や下水処理場、ガス製造設備などのライフライン拠点施設の場合、建物被 害や人的被害のように面的な広がりを持たないため、建物被害や津波の影響を考慮する場 合の「構造物が機能する場合」と「構造物が機能しない場合」を按分する方法の適合性が 低いと考えられる。

したがって、ライフライン被害想定は、津波被害が最悪のケースを想定できる「構造物 が機能しない場合」の想定を行った。

ア 上水道

上水道の被害想定は、内閣府(2013)⁵³の手法に基づき、津波浸水及び停電による浄水 場の機能停止判定を行い、断水人口を算定した。

また、震度から管路被害を算定し、断水人口を算定した。さらに両者の断水人口から 断水率、復旧日数を算定した。

(7) 上水道施設の現況

市内の給水人口は、約 114 万人で市内人口の約 96%を占めている。浄水場は 9 箇所 で埋設管路延長は約 4,500km である。

上水道施設の現況を表Ⅲ 3.33に示す。

口兵	埋	設管路延長 (km)	浄水場	給水人口	
亾唭	CIP・VP 等	DIP	計	(箇所)	(人)
広島市	478	4,035	4, 513	9	1, 143, 799

表Ⅲ 3.33 上水道埋設管等現況数量

※CIP・VP 等には、ACP、CIP、VP、SP、PEP、CP、LP 等が含まれる。

53 内閣府(2013):南海トラフ巨大地震の被害想定項目及び手法の概要~ライフライン被害、交通施設被害、被害額など~.

(1) 施設被害

上水道管被害箇所数、断水人口の算定フローを図Ⅲ 3.30に示す。

図Ⅲ 3.30 断水人口の算定フロー53

①津波浸水の影響(施設被害)

津波浸水の影響は、10m メッシュの津波浸水想定結果から浄水場別の機能停止期間 を判定した。

浄水場は、東日本大震災において、鉄筋コンクリート造りの部分は原型を留めるが、 窓、ドア等建具は破壊し内部浸水し、電気計測機器類が絶縁不良により全損した事例 があることから、津波浸水した場合に浄水場の機能が停止する停止期間を予測した。 津波浸水による停止は、「ア 上水道(ウ) 復旧予測」で示した供給率復旧曲線に合わ せて復旧するものとした。 ②停電の影響(施設被害)

停電の影響は、浄水場の停電予測結果と非常用発電機の整備状況を考慮した。

電力系統は、配電線が多重化されており、浄水場位置に該当する 250m メッシュにて 停電被害が想定された場合でも、他の配電経路を経由して電力を供給することが可能 と考えられる。

したがって、浄水場の停電は、電力系統が市町面積の 50%以上の広範囲にわたって 停電した場合にその影響を受けると仮定し、停電期間中は浄水場が停止するものとし た。停電による停止は、「ウ 電力(ウ) 復旧予測」で示した供給率復旧曲線に合わせ て復旧するものとした。

③揺れの影響(管路被害)

揺れの影響は、管種・管径別の被害率(首都直下地震防災・減災特別プロジェクト** ¹)を用いて管路被害を算定した。

※1 文部科学省の委託を受け、東京大学地震研究所、(独)防災科学技術研究所、京都大学防災研究 所が首都直下地震の解明、被害軽減と首都機能維持に資することを目的として実施

 $D = Cg \cdot Cd \cdot Cp \cdot Cl \cdot R(\nu) \cdot L$

R:標準被害率(箇所/km)

- ν :地表最大速度(cm/s)
- Cg:地盤補正係数
- Cd:口径補正係数
- Cp:管種補正係数
- C1: 液状化補正係数
- *L*:管路長(km)
- D:被害箇所数

標準被害率曲線 = $R(v) = C\Phi(\ln v - \lambda) / \zeta$

*C、*λ、ζ:標準被害率曲線の回帰定数

表Ⅲ 3.34 上水道管の標準被害率曲線の回帰定数54

管種	ξ	λ	С
CIP・VP・その他	0.860	5.00	2.06
DIP(ダクタイル鋳鉄管)	0.864	6.04	4.99

表Ⅲ 3.35 管種・管径補正係数55

管種	管種補正係数 <i>C</i> p
ACP(石綿セメント管)	1.2
CIP(鋳鉄管)	1.0
VP(塩化ビニル管)	1.0
SP(ねじ鋼管)	2.0
PEP(ポリエチレン管)	0.1
CP (コンクリート管)	1.0
LP(鉛管)	1. 0
OP (その他管)	1.0

表Ⅲ 3.36 口径補正係数55

管径	口径補正係数 <i>C</i> Φ
$\sim \phi$ 75mm	1.6
ϕ 100 \sim 150mm	1.0
$\phi 200 \sim 450$ mm	0.8
ϕ 500mm \sim	0.5

54丸山喜久・山崎文雄(2009):近年の地震データを考慮したマクロな配水菅被害予測式の改良、第30回土木学会地震工学論文集、 Vol. 30、pp. 565-574. ⁵⁵ 神奈川県(2009):神奈川県地震被害想定調査報告書.

	~ 4 4 H 王公 / 2 米石	地形補正係数
地形区力	做地形分類	C g
	山地	
	山麓地	
	丘陵	
	火山地	
白质山山四	火山山麓地	0.4
民員地盛	火山性丘陵	0.4
	岩石台地	
	砂礫質台地	
	岩礁・磯	
	河川敷	
	扇状地	
	自然堤防	
	後背湿地	
	旧河道	
浙毛主工业	三角州・海岸低地	
仲慎平地	砂州・砂礫州	1.0
	砂丘	
	砂州・砂丘間低地	
	干拓地	
	埋立地	
谷・旧水部	谷底低地	
	河川·水路	3.2
	湖沼	
段丘	ローム台地	1.5

表Ⅲ 3.37 上水道管被害予測式の地形・地盤係数54

表Ⅲ 3.38 液状化係数54

PL 値	液状化係数 (C1)
$0 \le PL \le 5$	1.0
$5 \le PL \le 15$	2.0
15 <pl< td=""><td>2.4</td></pl<>	2.4

④断水人口

断水人口は、浄水場の停止及び管路被害から求められる断水率に給水人口を掛け合 わせることで算定した。

給水人口は、浄水場 1 箇所当たりが受け持つ給水人口は同じとして仮定した(給水 人口が多い地域は、給水区域が広く、浄水場箇所数が多いと仮定)。

断水率については、阪神・淡路大震災を含む過去の地震時の被害をもとに配水管の 被害率と水道供給支障率(断水率)の関係を設定した川上(1996)⁵⁶の手法を改良した 神奈川県(2009)⁵⁵の予測手法を用いた。

a 津波浸水の影響

浄水場の停止による断水人口=機能停止浄水場数/全浄水場数×給水人口

b 揺れによる影響

揺れによる断水率 = 1 ÷ { 1 + 0.00789 × (配水管被害率)^{-2.801}}
 配水管の被害による断水人口=断水率×利用可能人口
 利用可能人口=給水人口-浄水場の停止による断水人口

(ウ) 復旧予測

「断水人口」と「上水道の供給率復旧曲線」から、復旧に要する日数を算定した。 復旧予測は、津波浸水により全壊した建物に相当する断水人口を復旧対象から除くこ ととし、供給率復旧曲線は、東京大学地震研究所ら(2012)⁵⁷に示される 1995 年兵庫 県南部地震の被災事例に基づくモデルを用いて算定した。

図II 3.31 上水道の供給率復旧曲線(破線:オリジナル、実線:改良モデル)57

⁵⁷ 東京大学地震研究所・(独)防災科学技術研究所・京都大学防災研究所(2012):首都直下地震防災・減災特別プロジェクト総括成果 報告書.

⁵⁶ 川上英二(1996):震災フォーラムー10kmに1カ所以上の被害が,上水道の機能を左右する-、土木学会誌、No.1.

イ 下水道

下水道の被害想定は、内閣府(2013)⁵³の手法に基づき、津波浸水及び停電による処理 場の停止判定を行い、機能支障人口を算定した。

また、震度及び PL 値から管路被害を算定し、処理場被害の影響を受けないエリアの機 能支障人口を算定した。さらに機能支障人口から支障率、復旧日数を算定した。

(ア) 下水道施設の現況

下水道施設の現況を表Ⅲ 3.39に示す。

表Ⅲ 3.39	下水道埋設管等現況数量

埋設管渠延長 (km)				浄水施設	処理人口
区域	塩ビ管等	その他管	計	(箇所)	(人)
広島市	2, 380	1, 535	3, 915	18	1, 342, 694

※塩ビ管等には、塩ビ管、陶管が含まれる。

※その他管には、ヒューム管、コンクリート管、ダクタイル管等が含まれる。

(イ) 施設被害

下水道管被害延長、下水道機能支障人口の算定フローを図Ⅲ 3.32に示す。

図皿 3.32 下水道機能支障人口の算定フロー53

①津波浸水の影響(施設被害)

津波浸水の影響として、処理場の位置データ及び浸水深(メッシュ単位)から浸水判 定を行い、機能支障人口を算定した。

処理場は、東日本大震災において、浸水によって機械電気設備の浸水被害や処理機 能停止が報告されていること、また、地下回廊が水没し処理機器が運転不能となった 事例があることから、津波浸水した場合に停止することとした。下水処理場は、東日 本大震災で復旧に1か月以上掛かった事例があることから、津波浸水した場合は復旧 しないものとした。

②停電の影響(施設被害)

停電の影響は、処理場の停電の予測結果から算定した。

電力系統は、配電経路が多重化されており、処理場位置に該当する 250m メッシュに て停電被害が想定された場合でも、他の配電経路を経由して電力を供給することが可 能と考えられる。

したがって、処理場の停電は、電力系統が市町面積の 50%以上の広範囲にわたって 停電した場合にその影響を受けると仮定し、停電期間中は処理場が機能しないものと した。停電による停止は、「ウ 電力(ウ) 復旧予測」で示した供給率復旧曲線に合わ せて復旧するものとした。

③揺れ・液状化の影響(管路被害)

揺れ・液状化の影響は、震度別 PL 値別の管種・管径別被害率を用いて管路被害を算 定した。

俗话		震度	震度階級				
1日 1里	液状化		5 弱	5 強	6 弱	6 強	7
塩ビ管 ・陶管	PL 値	全て	19.0%	30.8%	39.3%	48.6%	57.0%
その他 の管		15 <pl< td=""><td>11.4%</td><td>17.4%</td><td>23.1%</td><td>28.0%</td><td>33.4%</td></pl<>	11.4%	17.4%	23.1%	28.0%	33.4%
	PL 値	$5 < PL \leq 15$	8.7%	13.6%	17.0%	20.8%	24.6%
		$0 < PL \leq 5$	8.0%	12.6%	15.6%	19.1%	22.5%
		PL=0	7.6%	12.1%	14.6%	18.1%	21.2%

表 II 3.40 下水道 管種別被害率¹²

- ④機能支障人口は、処理場別の停止判定結果及び管路被害から推計される機能支障率 を考慮して算定した。
- a 津波浸水の影響
 機能支障人口=機能停止処理場の処理人口
- b 揺れ・液状化の影響(島根県(2012)を参考)
 機能支障人口=処理人口×機能支障率
 機能支障率=管渠被害延長÷管渠延長
 管渠被害延長=管種別管渠被害延長×管種別被害率

(ウ) 復旧予測

東日本大震災等での処理場の復旧状況を考慮し、津波浸水により全壊した建物に相 当する機能支障人口は、復旧対象から除くこととした。

a 津波浸水の影響による被害の復旧予測

東日本大震災の実績によると、津波浸水による被害を受けた処理場は、復旧に長時間(大規模な処理場では数年)かかるとされている⁵⁸ことから、津波浸水の影響による機能支障人口は、避難者を想定する最長期間である1か月を経過しても復旧しないものとした。

b 揺れ・液状化の影響

揺れ・液状化の影響による管渠被害の復旧は、上水道の復旧に合わせて実施され ると考えられることから、復旧作業単位の設定は困難である。

よって、下水道の復旧は中央防災会議(2006)²⁵を参考に、30日で完了すると仮 定し、地震発生1日後から等比級数的に回復すると仮定した。

ただし、下水道の復旧は、過去の実績から上水道の復旧が優先される可能性が高いため、上水道の復旧が完了した時点から復旧を開始するものとした。

ウ 電力

電力の被害想定は、内閣府(2013)⁵³の手法に基づき、津波浸水による建物全壊等に伴う停電軒数を算定した。

また、津波浸水による被害の影響を受けないエリアは、「火災延焼による建物焼失棟 数率」、「建物全壊及び揺れによる電柱折損率」、「地中整備用の路上設置機器の建物 全壊による損壊率」から停電軒数を算定した。

なお、発電所の被害想定は、停電被害が生じる条件の設定及び被害が生じた場合の影響範囲や復旧予測等を想定することが困難であることや、県内の電力需要に対応する発 電所が県内外に分散して立地しているなど、個別に特定することが困難であることから、 本調査の想定対象外とした。

(7) 電力施設の現況

電力施設の現況を表Ⅲ 3.41に示す。

電柱本数			配電線延長		
区域	(本)	架空	地下	計	(km)
広島市	79, 714	473, 216	114, 027	587, 243	4, 433

表 II 3.41 電力施設等現況数量

※電柱本数は、中国電力(株)の資料に基づき算出している。

(1) 施設被害

電柱被害数、停電軒数の算定フローを図Ⅲ 3.33に示す。

①津波浸水の影響(電線被害)

津波に起因した建物全壊による停電率から、停電軒数を算定した。

また、地中エリアにおいて、浸水がある場合は停電すると想定し、停電軒数を算定 した。このとき、地中エリアの電灯軒数は、架空電線延長と地中電線延長の比により 算定した。

②揺れの影響(電線被害)

想定手法は、中央防災会議(2006)²⁵の手法により、配電線による停電は、火災延焼 エリア、非延焼エリア、地下エリアに分類し、火災による延焼と電柱折損を考慮して 算定した。

a 火災延焼エリアの停電軒数

火災延焼エリアでの停電軒数は、火災による建物被害で設定された火災延焼によ る建物焼失棟数率を電灯軒数に掛け合わせることで算定した。

b 非延焼エリアの停電軒数

非延焼エリアでの停電軒数は、「建物被害による電柱折損数」、「揺れによる電 柱折損数」を算定し、停電軒数を算定した⁵⁹。

建物全壊による電柱折損率=0.17155×木造建物全壊率

震度	揺れによる電柱折損率
震度 5	0.00005%
震度 6	0.056%
震度 7	0.8%

表面 3.42 揺れによる電柱折損率25

⁵⁹ 鳥取県(2005):鳥取県地震防災調査研究報告書.

c. 地下エリア停電軒数

地下エリアは、地中設備につながる路上設置機器の建物全壊に起因する損壊によ り停電が生じると想定した。停電軒数の算定にあたっては、東日本大震災を踏まえ た被害率の変更がないため、阪神淡路大震災の実態による中央防災会議(2006)²⁵の 手法を採用して、地中整備用の路上設置機器の建物全壊による損壊率を乗じて求め た。

建物全壊による地中設備の路上設置機器の損壊率=建物全壊率×0.005

③停電軒数

「津波による地中線被害」「津波による架空線被害」「火災・揺れ等による被 害」の合計値とした。

(ウ) 復旧予測

東日本大震災等での復旧状況を考慮し、津波浸水により全壊した建物に相当する停 電軒数は、復旧対象から除くこととした。

供給率復旧曲線は、東京大学地震研究所ら(2012)⁵⁷に示される 1995 年兵庫県南部 地震の被災事例に基づくモデルを用いて算定した。

図皿 3.34 電力の供給率復旧曲線57

エ通信

通信の被害想定は、内閣府(2013)⁵³の手法に基づき実施した。

固定電話は、津波浸水による建物全壊に伴う不通回線数及び停電に伴う不通回線数を 算定した。津波浸水による建物全壊及び停電に伴う被害の影響を受けないエリアは、

「火災延焼による建物焼失棟数率」、「建物全壊及び揺れによる電柱折損率」による不 通回線数を算定した。さらに、不通回線数から不通回線率、復旧日数を算定した。

携帯電話は、「固定電話の不通回線率」、「停電による停波基地局率」から携帯電話 不通ランク、停波基地局率を算定した。

(ア) 通信施設の現況

通信施設の現況を表Ⅲ 3.43に示す。

表Ⅲ 3.43 通信施設現況数量

区域	電柱本数 (本)	回線数 (回線)
広島市	48, 188	290, 484

※電柱本数は、NTT 西日本の資料に基づき算出している。

(イ) 施設被害

①津波浸水の影響(屋外設置被害)【固定電話】

津波浸水の影響は、交換機と需要家端末がほぼ同一地域にあり、交換機設置環境を 考慮した場合、屋外設備(架空ケーブル)被害の影響の方が大きいと考えられる。その ため、津波による建物全壊率から「建物全壊による不通回線率」を求め、津波による 不通回線数を算定した。

建物全壊による不通回線数

=津波による建物全壊率×津波浸水があるエリアの回線数

②揺れの影響(屋外設備被害)【固定電話】

揺れの影響による不通回線数は、中央防災会議(2006)²⁵の手順(図Ⅲ 3.36)で算 定した。

図Ⅲ 3.36 揺れの影響による通信屋外設備被害の算定フロー²⁵

a 火災延焼エリア不通回線数

火災延焼エリアでの不通回線数は、火災による建物被害で設定された火災延焼に よる建物焼失棟数率を需要家回線数に掛け合わせることで算定した。

b 非延焼エリア不通回線数

火災による影響は、交換機と需要家端末がほぼ同一地域にあり、交換機設置環境 を考慮した場合、屋外設備(架空ケーブル)被害の影響の方が大きいと考えられる。 そのため、非延焼エリアでの不通回線数は、「揺れ」、「建物全壊」による電柱被 害によるものとし、建物被害及び揺れによる電柱折損数により算定した。

③停電の影響【固定電話】

停電の影響は、固定電話が給電を要するため、非常用発電機を有する交換機と比較した場合、停電の影響は需要家端末のほうが大きいと考えられる。そのため、電力における停電の被害想定結果を用いて、停電による不通回線数を算定した。

停電の影響による不通回線数

=停電率×通信可能回線数(火災・揺れ・津波の被害なし)

④携帯電話

携帯電話は中央防災会議(2006)²⁵の手順を参考に、固定電話の不通回線率と停電の影響を考慮して携帯電話不通ランクを算定した。

このとき、携帯電話不通ランクは、電力の被害想定結果として得られた停電率 (電力の供給軒数に対する停電軒数の割合)と固定電話回線の被害想定結果として 得られた不通回線率(固定電話回線数に対する不通回線数の割合)から、携帯電話 が不通となる可能性をエリアごと 4 段階で評価し、通話規制による輻輳については 考慮しない。

図皿 3.37 携帯電話の不通ランクの算定フロー

表 II 3.44 携帯電話不通ランク

不通 ランク	状態	判定基準
ランク A	非常につながりにくい	停電率・不通回線率の少なくとも一方が 50%超
ランク B	つながりにくい	停電率・不通回線率の少なくとも一方が 40%超
ランクC	ややつながりにくい	停電率・不通回線率の少なくとも一方が 30%超
ランクD	ランク A、B、C 以外	停電率・不通回線率のいずれも 30%未満

(ウ) 復旧予測

復旧予測は、西日本電信電話株式会社の復旧目標である「10日以内」を参考として、 「10日」で復旧するものとした。

なお、携帯電話は、基地局のデータが得られないことや、移動中継車の活用等によ る復旧の予測が困難であるため、復旧予測を行っていない。

オ ガス

ガスの被害想定は、内閣府(2013)⁵³の手法に基づき、津波浸水及び停電に伴う製造設備の停止判定を行い、供給停止戸数を算定した。

また、津波浸水及び停電に伴う被害の影響を受けないエリアは、SI 値(60kine)から供 給停止戸数を算定した。

(7) ガス施設の現況

ガス施設の現況を表Ⅲ 3.45に示す。

表Ⅲ 3.45 ガス施設現況数量

区域	供給戸数 (戸)	拠点数 (箇所)	
広島市	277, 868	21	

(イ) 施設被害

ガス供給停止戸数の算定フローを図Ⅲ 3.38に示す。

図Ⅲ 3.38 ガス供給停止戸数の算定フロー⁵³

①津波浸水の影響(施設被害)

津波浸水の影響として、ガス製造設備の浸水深を把握し、ガス製造設備の停止判定 を行った。ガス製造設備は、津波により電気・計装設備、地上配管等の損傷・浸水が 発生し、電気設備の冠水被害等が報告されていることから、津波浸水した場合に停止 することとした。ガス製造設備による供給ができない場合は臨時供給設備による代替 供給を考慮した。 2停電の影響

電力系統は、配電線が多重化されており、ガス製造設備位置に該当する 250m メッシュにて停電被害が想定された場合でも、他の配電経路を経由して電力を供給することが可能と考えられる。

したがって、ガス製造設備の停電は、電力系統が広範囲にわたって停電した場合に その影響を受けると仮定し、電力被害想定による停電軒数が全電灯軒数の 50%以上と なる場合に発生することとした。

③安全措置としての供給停止

中央防災会議(2006)²⁵を参考に、各供給ブロック内の SI 値の 60kine の超過率から 供給停止戸数を算定した。

④供給停止戸数

供給停止戸数は、津波浸水による影響と停電による影響を考慮した供給停止戸数と 安全措置としての供給停止戸数を足し合わせて算定した。

(ウ) 復旧予測

復旧予測は、供給停止戸数と東日本大震災等の過去の地震における復旧状況を考慮 し、津波浸水により全壊した建物に相当する供給停止戸数を復旧対象から除くことと した。

供給率復旧曲線は、東京大学地震研究所ら(2012)⁵⁷に示される 1995 年兵庫県南部 地震の被災事例に基づくモデルを用いて算定した。

図Ⅲ 3.39 ガスの供給率復旧曲線(破線:オリジナル、実線:改良モデル)57

(4) 交通施設被害

地震時及び地震後に交通機関が機能するかどうかは、災害の応急活動、復旧復興を円滑 に行う上で重要な要因であるため、交通機関の被害想定として、道路、鉄道、港湾・漁港、 空港の被害想定を行った。

津波浸水による被害は、ライフラインと同様に「構造物が機能しない場合」を用いて想 定した。

ア 道路

(7) 道路の現況

県内には、直轄国道及び補助国道、県道、市町道などが約36,000km 整備されている。

表Ⅲ 3.46 道路の現況

直轄国道(km)	補助国道、県道、市町道(km)	合計(km)
993	35, 403	36, 397

注 少数点以下の四捨五入により合計が合わない。

(イ) 施設被害

道路の被害想定は、内閣府(2013)⁵³の手法に基づき、まず揺れによる被害を算定し、 津波浸水域では津波浸水による被害を算定した。

ただし、津波浸水域においても、揺れによる被害が大きい場合があるため、揺れに よる被害と津波による被害のいずれか大きい方を採用した。

図Ⅲ 3.40 道路施設被害箇所数の算定フロー⁵³

①揺れによる道路被害(津波浸水域外)

被害箇所数=震度別道路延長(km)×震度別道路施設被害率(箇所/km)

震度	被害率(箇所/km)		
	直轄国道	補助国道・県道・市町道	
震度4以下		_	
震度5弱	0.035	0.016	
震度5強	0.11	0.049	
震度6弱	0.16	0.071	
震度6強	0.17	0.076	
震度 7	0. 48	0.21	

表Ⅲ 3.47 震度別道路施設被害率(津波浸水域外)53

②津波による道路被害(津波浸水域)

被害箇所数=浸水深別道路延長*(km)×浸水深別道路施設被害率(箇所/km)

※ 浸水深別建物棟数比率を用いて推計

表Ⅲ 3.48 震度別道路施設被害率(津波浸水域内)53

浸水深	被害率(箇所/km)		
	直轄国道	補助国道・県道・市町道	
1m 未満	0.13	0.058	
1m~3m	0.37	0.16	
$3m\sim 5m$	0.65	0.29	
$5m\sim 10m$	1.52	0.68	
10m 以上	2.64	1.17	

イ 鉄軌道

(7) 鉄軌道の現況

県内には、新幹線及び在来線等(アストラムライン含む)が約 715km 整備されている。

表Ⅲ 3.49 鉄軌道の現況

新幹線(km)	在来線等(km)	合計(km)
134	581	715

(1) 施設被害

鉄道の被害想定は、内閣府(2013)⁵³の手法に基づき、まず揺れによる被害を算定し、 津波浸水域では津波浸水による被害を算定した。

ただし、津波浸水域においても、揺れによる被害が大きい場合があるため、揺れに よる被害と津波による被害のいずれか大きい方を採用した。

図皿 3.41 鉄道施設被害箇所数の算定フロー53

①揺れによる鉄道被害

被害箇所数=震度別鉄道延長(km)×鉄道施設被害率*(箇所/km)

※東日本大震災の鉄道施設被害率(津波浸水域外)を用いる

震度階級	新幹線被害率 (箇所/km)	在来線等被害率 (箇所/km)	
震度5弱	—	0.26	
震度5強	0.26	1.01	
震度6弱	0.4	2.03	
震度6強以上	0.4	2.8	

表III 3.50 鉄道被害率(浸水域外)53

※JR 東日本の被害データ(浸水域外)に基づく(土木・保線のみ)

②津波による鉄道被害

被害箇所数=浸水域の鉄道延長(km)×鉄道施設被害率^{*3}(箇所/km)

※3 東日本大震災の鉄道施設被害率(津波浸水域)を用いる

表 3.51 鉄道被害率(浸水域)53

	被災箇所	鉄道延長(km)	原単位(箇所/km)
津波被害を受けた線区	640	325	1.97

※JR 東日本「津波を受けた7線区の主な被害と点検状況」により推計(土木・保線のみ)

ウ 港湾

(7) 港湾の現況

市内には、国際拠点港湾の広島港があり、岸壁、物揚場として 69 施設が整備されている。

(イ) 施設被害

港湾の被害として、揺れによる及び津波による岸壁、物揚場の被害を算定した。

a 揺れによる施設被害

図Ⅲ 3.42 港湾施設被害箇所数の算定フロー53

揺れによる施設被害は、地震発生に伴い復旧に長期間を要する岸壁、物揚場を被 害施設とし、ICHII(2004)⁶⁰に示される加速度と被害率の関係式で求めた。

係留施設の被害箇所数=係留施設数(非耐震)×港湾岸壁被害率F(a)

 F(a) = φ [{ln (a / c)}] / ζ
 F(a):被害率、a:最大加速度、C, ζは被害率曲線の定数で c=414.8、ζ (回帰定数) =0.45

⁶⁰ Koji ICHII(2004): Fragility curves for gravity-type quay walls based on effective stress analyses, 13th World Conference on Earthquake Engineering.

図Ⅲ 3.43 加速度と港湾岸壁被害率の関係⁶⁰

b 津波による施設被害

津波による施設被害は、東日本大震災での被害実態として、岸壁天端の津波高が 概ね4m以上の港湾で機能停止していることを参考とし、岸壁天端の津波高*が4m以 上となる場合、機能が停止すると判定した。

図Ⅲ 3.44 港湾施設の被害想定フロー53

※岸壁天端の津波高=岸壁前面における津波水位-岸壁の天端高

津波水位 (T.P.m) 岸壁天端の津波高:岸壁前面における津波水位 (T.P.m) と岸壁天端高の差 岸壁天端高 (T.P.m)

図Ⅲ3.45 岸壁天端の津波高

エ 空港

東日本大震災では、仙台空港が津波の被害を受け、復旧までに約1か月の時間を要し、 物流、人の移動に支障をきたした。このため、広島ヘリポートが各想定地震発生時に受 ける被害を想定した。

被害の想定は、津波浸水想定による空港敷地内浸水の有無及びその影響、平均的な震 度階級(計測震度の平均)、液状化危険度(PL 値の平均)を算定し、空港機能の維持に 重要となる建物と滑走路を対象に空港建物機能支障、滑走路機能支障の発生の可能性を 被害の様相として定性的に整理した。

(5) 生活支障

ア 避難者

避難者の想定は、地震や津波により自宅を失う、あるいは断水により自宅での生活が 困難となり避難所への避難が必要となる人数として算定した。

なお、避難者数は、発災日から当日・1日後、1週間後、1か月後の推移も算定した。

(7) 津波浸水域外における避難者

全避難者数は、次の式により算定した。

全避難者数=(全壊棟数+ 0.13 ×半壊棟数)×1棟当たりの平均人員 +断水人口^{*1}×断水時生活困窮度^{*2}

※1 断水人口は、自宅建物被害を原因とする避難者を除く断水世帯人員を示す。

※2 断水時生活困窮度とは、自宅建物は大きな損傷をしていないが、断水が継続されることにより自宅で生活し続けることが困難となる度合を意味する。時間とともに数値は大きくなる。 阪神・淡路大震災の事例によると、水が手に入れば自宅の被害がひどくない限りは自宅で生活するようになり、半壊の人でも水道が復旧すると避難所から自宅に帰っており、逆に断水の場合には生活困窮度が増す。

このとき、断水時生活困窮度は、(当日・1 日後)0.0 ⇒ (1週間後) 0.25 ⇒ (1 か 月後) 0.90 とした。

(イ) 避難所避難者と避難所外避難者の割合

阪神・淡路大震災の実績及び南海トラフ巨大地震による被害の甚大性・広域性を考 慮して、発災当日・1日後、1週間後、1か月後の避難所避難者と避難所外避難者の割 合を次のように想定した。

避難所避難者:避難所外避難者

(当日・1日後)60:40 ⇒ (1週間後)50:50 ⇒ (1か月後) 30:70

(ウ) 津波浸水域における避難者

津波浸水域における避難者は、災害発生直後(3日間)とそれ以降(4日目以降)で それぞれ次のように算定した。 a 地震発生直後(3日間)における避難者数の想定手法

全壊建物・半壊建物の住民は全員が避難するものとした。

また、一部損壊以下の被害建物(床下浸水を含む)は、津波警報に伴う避難指示・ 勧告により全員が避難するものとした。

なお、避難所避難者と避難所外避難者は、東日本大震災における浸水範囲の全人 口は約 60 万人(総務省統計局の集計より)に対し、内閣府の集計による最大の避難所 避難者数は約 47 万人(3 月 14 日)で、その内沿岸部の避難所避難者数は約 40 万人で あることから、次の式により、その比を設定した。

避難所避難者:避難所外避難者=40:(60-40)=2:1 避難所避難者数(発災当日~発災2日後)=津波浸水域の居住人口×2/3

b 地震発生後4日目以降の避難者数の想定手法 4日目以降の避難者は、次の式により算定した。

全避難者数=(全壊棟数+0.13×半壊棟数)×1棟当たりの平均人員 +断水人口×断水時生活困窮度

ここで、断水時生活困窮度は、(1週間後)0.25⇒(1か月後)0.90

なお、東日本大震災の避難実績及び南海トラフ巨大地震による被害の甚大性・広 域性を考慮して、1週間後、1か月後の避難所避難者と避難所外避難者の割合を次の ように想定した。

(避難所避難者:避難所外避難者)=(1週間後)90:10 ⇒ (1ヶ月後)30:70

イ 帰宅困難者

帰宅困難者として、外出者数、帰宅困難者数(区毎および交通結節点毎)を算定した。

(7) 外出者数

外出者数は、居住ゾーンの外へ通勤・通学していて、地震後の混乱の中で安全確保 等のために少なくともしばらくの間は待機する必要がある者の人数を算定した。

算定にあたって外出者は、平成22年国勢調査結果の集計表の「従業地・通学地による常住市区町村、男女別15歳以上就業者数及び15歳以上通学者数(15歳未満通学者 を含む通学者-特掲) - 都道府県、市町村」による各市区町外からの通勤者・通学者 数とした。 (イ) 帰宅困難者数

帰宅困難者として、地震後しばらくして混乱等が収まり、帰宅が可能となる状況と なった場合において、遠距離等の理由により外出先で足止めされ、滞留する人口を算 定した。

帰宅困難者数は、代表交通手段が鉄道、バス、自動車、二輪車の「帰宅距離別滞留 人口」に対して、東日本大震災の帰宅実態調査結果に基づく外出距離別帰宅困難率を 乗じて算定した。

なお、想定するシーンは、外出者数が最も多い昼 12 時とし、算定に当たっては、次 の前提を設定した。

- a) 代表交通手段が徒歩・自転車の場合、災害時においても徒歩・自転車で帰宅する と考え、全員が「帰宅可能」とみなす。
- b)通勤・通学者の利用交通機関の設定においては、平成22年国勢調査結果の小地域 集計表「利用交通手段(9区分)、男女別15歳以上自宅外就業者数及び通学者数 一町丁・字等」を用いて設定する。
- c) 具体の設定に当たっては、「通勤・通学距離が短い人は、歩行・自転車を用いる」ことを前提として配分することとし、自市区町内への通勤・通学者に歩行・ 自転車を優先的に配分し、以降、市区町役場間の直線距離が近い自治体に対する 通勤・通学者に割り当てる。
- d) 外出距離別帰宅困難率は、東日本大震災発災当日の状況も踏まえて、以下の式を 以って求めることとし、外出距離には「市区町役場間の距離」を用いる。

外出距離別帰宅困難率(%) = (0.0218 × 外出距離 km) × 100

(ウ) 交通結節点における帰宅困難者数

地震後しばらくして混乱等が収まり、帰宅が可能となる状況となった場合において、 遠距離等の理由により外出先で足止めされ滞留する人口について、広島市内の主な交 通機関を利用しているものと想定する。広島市交通実態調査(平成 20 年度)で対象と した主要交通結節点の利用人数の比率を用いて、交通結節点の帰宅困難者数を算出し た。

ウ 物資需要量

地震発生時に必要となる物資の需要量を、次のとおり算定した。

(7) 食料需要量に関する具体の設定

- ・食料需要は阪神・淡路大震災の事例に基づき、避難所避難者の 1.2 倍を対象者として、1 日 1 人 3 食とした。
- ・食料の供給は、市のもつ公的備蓄量及び家庭内備蓄量を対象とした。
- ・対象とする備蓄食料は、乾パン、即席めん、米、主食缶詰とした。
- (イ) 飲料水需要量に関する具体の設定
 - ・断水人口を給水需要者として、1日1人3リットルとした。
 - ・飲料水供給量は、市によるペットボトルの公的備蓄量・家庭内備蓄量及び給水資 機材による応急給水量を対象とした。

(ウ) 生活必需品需要量に関する具体の設定

- ・生活必需品は毛布を対象とし、住居を失った避難所避難者の需要(1人2枚)とした。
- (I) 仮設トイレ需要量

地震発生後に必要となる仮設トイレについて、現状の備蓄量を考慮し、避難所生活 者を対象に、需要基数、需要容量を算定した。

なお、算定にあたっては、次の条件を設定した。

- ・被害が最大となる冬の夕方18時かつ風速11m/sの条件を想定した。
- ・需要は、避難所における避難者数及び下水道の機能支障人口を対象とし、仮設ト イレについては100人当たり1基、簡易トイレについては10人当たり1個を必要 個数とするものとした。(1日後の仮設トイレ不足量算定には、簡易トイレを仮設 トイレ0.1基に換算する)
- ・容量で評価する場合は、1人1日当たりのし尿排出量を1.2 リットルとし、し尿 収集の間隔日数を3日とした。

エ 医療機能支障

地震による医療機能への支障について、医療施設の損壊、ライフラインの途絶により 転院を要する患者数(要転院患者数)を病床数等が把握できる二次医療圏ごとに算定した。

また、新規入院需要、外来需要から医療機関の受入れ許容量を差し引いた医療需要過 不足数を二次医療圏ごとに算定した。

さらに、東日本大震災で課題となった転院を要する患者の発生や医療機関における燃料、水の不足等の被害の様相を整理した。

なお、医療機能支障の算定は、最悪の条件で算定することとし、「死者数の合計が最 大となり、負傷者も多くなることで最も医療需要が多くなる想定シーン」として冬深夜 を採用した。このとき、津波による死傷者数は、「構造物が機能する場合」と「構造物 が機能しない場合」の按分で算定した。

(7) 要転院患者数

被災した医療機関からの転院を要する患者数(要転院患者数)は、平常時在院患者 数⁶¹を基本に、医療機関建物被害率、ライフライン機能低下による医療機能低下率、転 院を要する者の割合を乗じて算定した。

要転院患者数 = 平常時在院患者数 × 医療機関建物被害率

× ライフライン機能低下による医療機能低下率

× 転院を要する者の割合

ここで、医療機関建物被害率、ライフライン機能低下による医療機能低下率、転院 を要する者の割合は、次の仮定により設定した。

医療機関建物被害率 : (全壊・焼失率+1/2×半壊率)

ライフライン機能低下による医療機能低下率

: 震度 6 強以上の地域では医療機能の 60%がダウンし、それ

以外の地域では30%がダウン

転院を要する者の割合 :50%

なお、「(7) その他の被害 エ 重要施設」における医療施設の被害想定は、建物 自体の機能支障を評価したものであり、本項目では、ライフライン機能低下も評価し た上で要転院患者数を想定している。

⁶¹ 厚生労働省(2011): 医療施設(静態・動態)調査・病院報告の概況、厚生労働省ホームページ.

(イ) 医療需要過不足数

医療対応力不足数は、重傷者及び一部の死者への対応(入院)、軽傷者への外来対応 (外来)とし、医療需給の過不足として算定した。

- a 入院需要(新規入院需要発生数)及び外来需要
 - 入院需要(新規入院需要発生数) = 重傷者
 - + 医療機関で結果的に亡くなる者(全死者数の10%と設定)
 - + 被災した医療機関からの転院患者数

外来需要 = 軽傷者

b 医療供給数

医療供給数は、医療機関の病床数、外来診療数を基本として、医療機関建物被害率(全壊率・焼失率+1/2×半壊率)、空床率、ライフライン機能低下による医療機能低下率を乗じて算定した。

医療供給数(入院)=医療機関の病床数

- × 医療機関建物被害率 (全壊率・焼失率+1/2×半壊率)
- × 空床率 × ライフライン機能低下による医療機能低下率
- 医療供給数(外来)=外来診療数
 - × 医療機関建物被害率(全壊率・焼失率+1/2×半壊率)
 - × 空床率 × ライフライン機能低下による医療機能低下率

(6) 災害廃棄物

災害廃棄物は、地震によるがれき等の発生量を算定した。

ア 災害廃棄物発生量

災害廃棄物発生量は、阪神・淡路大震災における災害廃棄物発生量(木造・非木造 別)原単位を用いて震災廃棄物対策指針(厚生省、平成10年10月)のがれき発生量の 推定式から算定した。

また、災害廃棄物量は、上記で算定された木造、非木造別の1 棟当たりの災害廃棄物 発生量をもとに、新潟県中越地震における建物1 棟当たりの項目別災害廃棄物量の比率 (可燃、不燃)を参考として項目別に区分した。

(7) 災害廃棄物量の算定

災害廃棄物発生量は、厚生省(1998)⁶²の震災廃棄物対策指針におけるがれき発生量の推定式を用いて算定した。

 $Q1 = s \times q1 \times M$

Q1:がれき発生量(t)

- s :1棟当たりの平均延べ床面積(平均延床面積)(m²/棟)
- q1:単位延べ床面積当たりのがれき発生量(原単位)(t/m²)
- N1:解体建築物の棟数(解体棟数=全壊棟数)(棟)

図III 3.46 災害廃棄物量の算定フロー⁵³

⁶² 厚生省(1998):震災廃棄物対策指針.

a 単位延べ床面積当たりのがれき発生量

単位延べ床面積当たりのがれき発生量(q1)は、阪神・淡路大震災における木造、 非木造別の単位床面積当たりの可燃・不燃廃棄物量を用い、1棟当たりの平均のベ 床面積は、広島県の1住宅当たりの平均延べ床面積 96.58m²(広島県の統計(広島県、 平成20年))を用いた。

広島県における1棟当たりの木造、非木造別の可燃・不燃災害廃棄物量(A) 木造可燃災害廃棄物量 = 0.194 (t/m²) × 96.58 (m²) = 18.74 t 木造不燃災害廃棄物量 = 0.502 (t/m²) × 96.58 (m²) = 48.48 t 木造廃棄物量 合計 67.22 t 鉄筋可燃災害廃棄物量 = 0.120 (t/m²) × 96.58 (m²) = 11.59 t 鉄筋不燃災害廃棄物量 = 0.987 (t/m²) × 96.58 (m²) = 95.32 t 非木造廃棄物量 合計 106.91 t

b 項目別災害廃棄物量

災害廃棄物量は、1)で算定した木造・非木造別災害廃棄物量を 10 項目(①可燃物、 ②木くず、③不燃物、④金属くず、⑤コンクリートくず、⑥家電・自動車、⑦船舶、 ⑧危険物・PCB 廃棄物・石綿含有廃棄物等、⑨津波堆積物、⑩火災が発生した場所 にある廃棄物)に分類した。

10 項目の内、①可燃物、②木くず、③不燃物、④金属くず、⑤コンクリートくず、 ⑥家電については、建物倒壊による災害廃棄物との関連性が高いことから、新潟県 中越地震における長岡市の事例を参考とし、島岡・山本(2009)⁶³による災害廃棄物 量の分類別重量比率を用いて算定した(表Ⅲ 3.52)。

また、表Ⅲ 3.52の小分類ごとに算定した災害廃棄物量は、表Ⅲ 3.53の項目欄に 示す「処理指針」の①~⑥として再整理・集計した。

なお、⑥自動車、⑦船舶、⑧危険物・PCB 廃棄物・石綿含有廃棄物等、⑩火災が 発生した場所にある廃棄物は、建物との関連性が低いため算定していない。

広島市における1棟当たりの分類別災害廃棄物量(C)

=広島市における1棟当たりの木造、非木造別の可燃・不燃災害廃棄物量(A)× 項目別重量比率(B)

⁶³ 島岡隆行・山本耕平(2009):廃棄物資源循環学会シリーズ3 災害廃棄物、中央法規.
大分類	小分類(C) ※1	小分類 ※2	原単位	単位	可燃・不燃別 重量比率(B)
	可燃粗大ごみ	①可燃物	1.0	t	7.9%
	可燃ごみ	①可燃物	2.3	t	18.3%
可燃物	木くず	②木くず	2.1	t	16.7%
	廃木材	②木くず	7.2	t	57.1%
	計		12.6	t	
	不燃粗大ごみ	③不燃物	0.1	t	0.3%
	不燃ごみ	③不燃物	2.2	t	6.0%
	鉄・アルミ	 ④金属くず 	0.7	t	1.9%
	コンクリート殻	⑤コンクリートくず	24.0	t	65.6%
	廃家電	⑥家電	0.1	t	0.3%
不厥物	廃プラスチック	③不燃物	0.5	t	1.4%
1.782452	ガラス・陶磁器	③不燃物	0.3	t	0.8%
	瓦	③不燃物	1.5	t	4.1%
	石膏ボード	③不燃物	1.7	t	4.6%
	壁土	③不燃物	3.1	t	8.5%
	その他	③不燃物	2.4	t	6.6%
	計		36.6	t	
	テレビ		0.9	台	
その他	冷蔵庫		1.1	台	
その他	洗濯機		0.6	台	_
	エアコン		0.8	台	—
	合言	*			

表Ⅲ 3.52 新潟県中越地震における建物1棟当たり分類別災害廃棄物重量63

※1 島岡・山本(2009)における項目

※2 「処理指針」における項目

表 〒3.53 広島市における建物1棟当たり項目別災害廃棄物量

分類 項目※1		項目※2	1棟あた 災害廃棄4	り項目別 物量(t)	算出式		
			木造	非木造	木造	非木造	
	可燃粗大ごみ	①可燃物	1.49	0.92	$7.9\% \times 18.74t = 1.49t$	$7.9\% \times 11.59t = 0.92t$	
	可燃ごみ	 ①可燃物 	3.42	2.12	$18.3\% \times 18.74t = 3.42t$	$18.3\% \times 11.59t = 2.21t$	
可燃物	木くず	②木くず	3.12	1.93	$16.7\% \times 18.74t = 3.12t$	16.7%×11.59t=1.93t	
	廃木材	②木くず	10.71	6.62	$57.1\% \times 18.74t = 10.71t$	57.1%×11.59t=6.62t	
	計		18.74	11.59			
	不燃粗大ごみ	③不燃物	0.13	0.26	0.3%×48.48t=0.13t	$0.3\% \times 95.32t = 0.26t$	
	不燃ごみ	③不燃物	2.91	5.73	6.0%×48.48=2.91t	$6.0\% \times 95.32t = 5.73t$	
	鉄・アルミ	 ④金属くず 	0.93	1.82	$1.9\% \times 48.48t = 0.93t$	$1.9\% \times 95.32t = 1.82t$	
	コンクリート殻	⑤コンクリートくず	31.79	62.51	$65.6\% \times 48.48t = 31.79t$	65.6%×95.32t=65.51t	
	廃家電	⑥ 家電	0.13	0.26	$0.3\% \times 48.48t = 0.13t$	$0.3\% \times 95.32t = 0.26t$	
不厥物	廃プラスチック	③不燃物	0.66	1.30	$1.4\% \times 48.48t = 0.66t$	$1.4\% \times 95.32t = 1.30t$	
1.7899422	ガラス・陶磁器	③不燃物	0.40	0.78	$0.8\% \times 48.48t = 0.40t$	$0.8\% \times 95.32t = 0.78t$	
	瓦	③不燃物	1.99	3.91	$4.1\% \times 48.48t = 1.99t$	$4.1\% \times 95.32t = 3.91t$	
	石膏ボード	③不燃物	2.25	4.43	$4.6\% \times 48.48t = 2.25t$	$4.6\% \times 95.32t = 4.43t$	
	壁土	③不燃物	4.11	8.07	$8.5\% \times 48.48t = 4.11t$	$8.5\% \times 95.32t = 8.07t$	
	その他	③不燃物	3.18	6.25	$6.6\% \times 48.48t = 3.18t$	$6.6\% \times 95.32t = 6.25t$	
	計		48.48	95.32			
	テレビ		_	_			
その曲	冷蔵庫		_	_			
C v / 16	洗濯機		-	—			
	エアコン		—	_			
	合言	-	67.22	106.91			

※1 島岡・山本(2009)における項目

※2 「処理指針」における項目

(7) その他の被害

ア エレベータ内閉じ込め

エレベータ内閉じ込めの想定は、内閣府(2013)⁵³の手法に基づき、安全装置作動に伴 う停止、揺れによる故障に伴う停止、停電による停止を考慮し、エレベータ内閉じ込め 者数を算定した。

図Ⅲ 3.47 エレベータ内閉じ込めによる被害の算定フロー⁵³

(7) 地震時管制運転中の安全装置作動に伴う停止

a エレベータ内滞留人口、エレベータ設置建物数、エレベータ台数
 エレベータ設置建物数及びエレベータ台数は、中央防災会議(2006)²⁵の手法に従い、非木造建物数を対象に表Ⅲ 3.54に示す設置率によって算定した。このとき、建物1棟当たりのエレベータ設置基数は、1基と仮定した。

表Ⅲ 3.54 エレベータ設置率²⁵

用途	エレベータ設置率
事務所	73%
住宅	37%

また、エレベータ内滞留人口はエレベータ内滞留人口比率によって算定した。

表 3.55 エレベータ内滞留人口64

用途	エレベータ内滞留人口					
事務所	事務所内滞留人口(昼 12 時)×0.5%					
住宅	1 時間当たり人口変化 ^{*×} 30 秒/1 時間					

※エレベータの利用者の多くは、朝の通勤、通学のために利用する朝7~ 8時の時間帯が最も多いと考えられる。そこで、深夜人口を7時の屋内 人口、昼12時人口を8時の屋内人口に置き換えて考え、この差分を1 時間当たりの人口変化と想定した。

b エレベータ内閉じ込め者数、エレベータ停止が発生する建物棟数、台数

エレベータは、80gal で管制運転装置が作動するとして、地震時管制運転装置作 動に伴う停止(人)を算定し、さらに「ドア開放検知に伴う安全装置作動率」を掛け ることで階と階の間での停止数(人)を算定した。

表Ⅲ 3.56 地震時管制運転装置設置率65

地震時管制運転装置設置率	
63.77% (428,621 台/全国 672,097 台)	

64 火災予防審議会(1999):地震発生時における人命危険要因の解明と対策.

⁶⁵ 日本エレベータ協会(2012):2011 年度昇降機台数調査報告.

表Ⅲ 3.57 ドア開放検知に伴う安全装置作動率66

ドア開放検知に伴う安全装置作動率 0.114% (2005 年千葉県北西部地震では、地震時管制運転装置が作動して 緊急停止した台数 64,000 台の内 73 台で閉じ込めが発生)

(イ) 揺れによる故障に伴う停止

揺れによる故障に伴う停止は、揺れによる故障率から設備の故障や破損等によるエレベータ停止数(人)として算定した。

なお、対象とするエレベータは、地震時管制運転中の安全装置作動に伴う停止が発 生していないエレベータとした。

震度階級	故障率
7	24%
6 強	22%
6 弱	15%
5 強	8%
5 弱	1%

表Ⅲ 3.58 揺れによる故障率⁶⁷

(ウ) 停電に伴う停止

停電に伴う停止は、停電時自動着床装置非設置率から停電エリアにあるエレベータ の停止数(人)として算定した。

なお、対象とするエレベータは、地震時管制運転中の安全装置作動に伴う停止及び 揺れによる故障に伴う停止が発生していないエレベータとした。

表Ⅲ 3.59 停電時自動着床装置非設置率68

停電時自動着床装置非設置率 68.4% (中部・近畿圏の内陸地震の被害想定(H20.12)で用いられた値)

⁶⁸ 内閣府 (2009): 中部・近畿の内陸地震の被害想定による日本エレベータ協会の東京 23 区における調査資料.

⁶⁶藤田聡(2006):地震災害とエレベータ、予防時報、227、pp.42-48.

⁶⁷ 火災予防審議会·東京消防庁(1999):地震発生時における人命危険要因の解明と対策.

イ 危険物施設

(7) 対象とする危険物施設

対象とする危険物施設は、次のとおりである。

					(
区域		製造所等の区分							
	製造所	屋内貯蔵所	屋外タンク 貯蔵所	屋内タンク 貯蔵所	地下タンク 貯蔵所	<u>⊒</u> ↓			
亡自古	6	399	171	119	678	рI			
四面巾	移動タンク 貯蔵所	屋外貯蔵所	給油取扱所	移送取扱所	一般取扱所				
	467	85	515		381	2, 821			

表Ⅲ 3.60 対象とする危険物施設数

(単位:施設)

(イ) 危険物施設被害

危険物等の被害想定は、内閣府(2013)⁵³の手法に基づき、危険物施設への揺れによ る影響として、危険物施設数に震度別の被害率を乗じ、火災、流出、破損箇所の予測 数を算定した。

また、津波による影響について、東日本大震災の被災状況に関する情報やデータを 踏まえて、被害の様相を整理した。

図Ⅲ 3.48 危険物施設の被害数の算定フロー53

製	震度 6 弱							震度 6 強						
)造 所		被害数			被害率			被害数			被害率			
等 の 区 分	施設数	火災	流出	破損等	火災	流出	破損等	施設数	火災	流出	破損等	火災	流出	破損等
製造所	918	0	1	54	0.0%	0.1%	5.9%	177	0	0	17	0.0%	0.0%	9.6%
屋内貯蔵所	7,160	0	27	24	0.0%	0.4%	0.3%	2, 918	0	35	60	0.0%	1.2%	2.1%
屋外タンク貯蔵所	6, 988	0	10	254	0.0%	0.1%	3.6%	3, 051	0	13	301	0.0%	0.4%	9.9%
屋内タンク貯蔵所	1, 758	0	1	1	0.0%	0.1%	0.1%	578	1	1	8	0.2%	0.2%	1.4%
地下タンク貯蔵 所	10, 043	0	7	36	0.0%	0.1%	0.4%	5, 176	0	16	98	0.0%	0.3%	1.9%
移動タンク貯蔵 所	6,970	0	0	0	0.0%	0.0%	0.0%	3, 850	0	0	3	0.0%	0.0%	0.1%
屋外貯蔵所	1, 573	0	0	0	0.0%	0.0%	0.0%	904	0	0	33	0.0%	0.0%	3. 7%
給油取扱所	6, 799	0	1	245	0.0%	0.0%	3.6%	3, 572	0	5	329	0.0%	0.1%	9.2%
移送取扱所	104	0	3	14	0.0%	2.9%	13.5%	29	0	2	8	0.0%	6.9%	27.6%
一般取扱所	6,805	0	7	82	0.0%	0.1%	1.2%	3, 556	4	14	153	0.1%	0.4%	4.3%

表Ⅲ 3.61 危険物施設の被害率53

注)阪神・淡路大震災と東日本大震災の被害数を合算して被害率を求めた。

ウ ため池の決壊

破堤時に人家及び公共施設への被害が想定される総貯水量 1,000m³ 以上の農業用ため 池を対象として、堤体・基礎地盤の耐震性と震度分布から地震時の危険度を評価した。

図Ⅲ 3.49 重要ため池の危険度評価フロー¹²

①重要ため池として破堤時に人家及び公共施設に被害が想定される総貯水量 1,000m³ 以上の農業用ため池を抽出した。

②建設省河川局(1978)⁶⁹は、河川堤防の耐震性を簡易的に判定する手法として、堤防の 高さ、平均幅(堤防天端と堤防敷の平均)、堤体の締固め度、地盤種別などの要因か ら堤体の耐震性を判定し、さらに基礎地盤の耐震性ランクを組み合わせて河川堤防 の耐震性を判定している。この手法を参考に、想定される地震動の大きさを考慮し、 地震時の危険性を評価した上で、次のとおりため池堤体の耐震性を評価した。

表亚 3.62	堤防の耐震性の一	-次判定 ′0
---------	----------	---------

堤体の耐震性 基礎地盤の耐震性	1	2	3
1)	а	а	b
2)	а	b	С
3)	b	с	С

⁶⁹ 建設省河川局(1978):河川·海岸施設の耐震性調査要領.

【堤体の耐震性】

1…堤防高(H)≧6m かつ 平均幅≦3H かつ アースダム

2…1、3以外のもの

3…堤防高(H) <3m かつ 平均幅>6H 、もしくは 重力式ダム

【基礎地盤の耐震性】

- 1)…旧河道、旧湖沼などの地震時に液状化しやすい地域、地震応答解析結果より液状 化の可能性が高い地域、設定した T₆が 1.5 以上
- 2)…1)以外のⅢ種地盤
- 3)… I ~Ⅱ 種地盤

※液状化が高い地域:PL>15のメッシュ ※T₆:地盤の特性値であり、耐震設計上の地盤種別をI~Ⅲ種で分類する際に用いる指標

地盤種別	地盤の特性値 T _G (S)	該当する一般的な地盤
I 種	$T_{G} < 0.2$	岩盤
Ⅱ種	$0.2 \leq T_{G} < 0.6$	洪積層
Ⅲ種	$0.6 \leq T_G$	沖積層

表Ⅲ 3.63 基礎地盤の耐震性⁷⁰

③ため池の危険度評価

想定地震時の危険性については、次のとおり評価した。

表Ⅲ 3.64 ため池の危険度評価

一時判定	震度 5 弱以下	震度5強	震度6弱	震度6強以上
а	С	В	А	А
b	С	С	В	А
с	С	С	С	В

A…ため池の破堤による災害発生の危険性が高い

B…ため池の破堤による災害発生の危険性がやや高い

C…ため池の破堤による災害発生の危険性は低い

エ 重要施設

地震時に災害対策拠点となる施設や、消防活動の拠点施設、医療拠点施設及び避難施 設を重要施設とし、広島県(2007a)¹²の手法に基づき、地震時の使用可能性を施設ごと に算定した。

図Ⅲ 3.50 重要施設の機能支障評価フロー¹²

表Ⅲ 3.65 重要施設の現況

区域	施設数
広島市	2, 340

(7) 評価の対象施設

次の3種の施設を重要施設として考慮し、建物の耐震評価と震度・液状化・延焼に よる被害判定より機能支障を評価した。なお、被害が最大となる冬の夕方18時かつ風 速11m/sの条件で評価を行った。

・災害対策本部及び消防活動拠点となる施設

(災害対策本部、消防施設、土木事務所等):220 施設

·避難拠点施設

(学校、公民館、福祉施設、運動施設、漁協、研修センター、研修施設、児童館、 寺、宗教施設、集会所、宿泊施設、神社、図書館、体育館、農協、省庁庁舎、 福祉センター、文化施設、保育所、保健施設等):1,967 施設

· 医療施設

(「広島県新地域医療再生計画」の耐震化整備状況調査対象の医療施設):153 施設

(イ) 耐震ランクによる耐震評価(耐震診断あり)

耐震診断が行われている重要施設については、耐震診断によって求まる構造耐震指標(I_s)と判定指標(I_{s0})から $\alpha = I_s/I_{s0}$ を求め、表III 3.66に示す α に応じた耐震ランク(A~D)を設定した。

判定指標(I_{s0})は、県庁舎、警察本部、防災センター、医療センターの場合には $I_{s0}=1.2$ 、各地区の合同庁舎、警察署、病院の場合には $I_{s0}=1.0$ 、学校施設の場合には $I_{s0}=0.7$ 、一般官庁施設の場合には $I_{s0}=0.8$ (ただし、学校施設の内鉄筋コンクリート造 で第1次診断を採用する場合は、 $I_{s0}=0.9$)とした。

α	耐震ランク
$\alpha \ge 1.00$	А
$1.00 > \alpha \ge 0.65$	В
$0.65 > \alpha \ge 0.35$	С
0. $35 > \alpha$	D

表Ⅲ 3.66 耐震ランクの判定基準¹²

(ウ) 建築年・構造・階数による耐震評価(耐震診断なし)

耐震診断が行われていない重要施設については、施設の構造及び建築年から、簡易 的に A~D の 4 段階に分類した。ランクの判定基準にあたっては、各種建築関係法規、 基準の改定年、学会等の動向を考慮した。

表 II 3.67 耐震ランクの簡易判定基準(構造別)¹²

・RC 構造建物

竣工年(昭和)	\sim 44	45~53	$54 \sim 56$	$57\sim$
耐震ランク	D	С	В	А

・SRC 構造建物

耐震ランクは全てAランク

•S 構造建物

竣工年(昭和)	$\sim \! 49$	$50 \sim 56$	$57\sim$
耐震ランク	D	В	А

・木造・その他構造の建物

竣工年(昭和)	~ 56	$57\sim$
耐震ランク	D	В

(I) 建物使用可能性判定

建物そのものの使用可能性について、震度と耐震ランクから表Ⅲ 3.68の判定基準により評価した。

その際、液状化危険度が大きい場合→評価を1ランク下げるとともに、想定延焼区 域(メッシュ)内にある施設は、機能に支障をきたす可能性があるとした。

表Ⅲ 3.68 地震危険要因の分類¹²

○震度ランク(5段階)

	4以下	5 弱	5	強	6	弱	6 強以上	-
○液状化危険度(2段階)								
PL 值 15 未満				PL 値 15 以上				
○延焼危険度(2段階)								
延焼区域にない※						延焼	区域にあ	る

※ 焼失棟数が0棟のメッシュ

表Ⅲ 3.69 耐震ランクと震度階級による判定¹²

震度階級 耐震性	4以下	5 弱	5 強	6 弱	6 強以上
А	0	0	0	0	0
В	0	0	0	0	\bigtriangleup
С	0	0	0	\bigtriangleup	×
D	0	0	\bigtriangleup	×	×

【機能支障の評価】

○:使用可能である。

△:概ね使用可能であるが、一部使用に制限が生じる可能性がある。

×:機能に支障をきたす可能性がある。

(8) 経済被害

地震発生から経済的な被害の様相を時間軸で分類すると図Ⅲ 3.51の 3 区分(①資産等への被害の発生時期、②生産低下等による被害影響の発生時期、③中長期の経済・財政システム影響)に分類される。本調査では、①及び②の内下線で示す部分について定量評価し、被害額を算定した。被害額の算定項目を表Ⅲ 3.70に示した。

	定	量評価対象項目	概要
		建物(木造、非木造)	 ・復旧費用を原単位とする被害額 (県の原単位を設定)
Ver	建物被害	資産(家庭用品、償却資産、棚卸資産)	
資産等の対		上下水道	
	ライフライン・	電気、通信、ガス	
恢害 (直	インフラ施設被害	交通施設 (高速道路、鉄道、港湾)	 ・復旧費用を原単位とする被害額 (東日本大震災の実績を反映)
接被	その他公共土木施設	河川・海岸施設、空港 等	
害額	土地の損壊・喪失	農地	
2)	災害廃棄物処理	災害廃棄物の撤去/処理に要する費用	 ・復旧費用を原単位とする被害額 (阪神淡路大震災の実績)
生産低下・交流	生産低下による影響 被災地域内の生産低下		 ・生産関数方式による間接被害の算定 ・経済中枢性の低下 (県の生産関数を設定)
通寸断によ よ	六、五一十世に)っト こ見く細い	人流の移動とりやめによる影響 (道路、鉄道)	、六予一座にトス相ケ始の河圧
る影響(明	次通り朝による影響	物流寸断による影響 (港湾)	・文通り例による損大額の計価
• 接被害額)	波及的被害	生産低下、交通寸断による影響が他産業 へ及ぼす影響	 ・産業連関表を用いた他産業への波 及被害額

表Ⅲ 3.70 被害額の項目⁵³

ア 資産等の被害

資産等の被害は、被害を受けた施設及び資産について、現在価値ではなく、復旧・再 建に要する費用の総額を当該施設及び資産の被害額と捉えることとし、表Ⅲ 3.71の①被 害量(物的被害の想定結果)に②原単位(単位当たり復旧額等)を乗ずることにより算定し た。

資産等の被害額

=①被害量(物的被害の想定結果) × ②原単位(単位当たり復旧額等)

定量評価対象項目		①被害量	②原単位	原単位の 出典
建物	木造住宅	被害のあった住宅数 _(注1) (全壊棟数+半壊棟数×0.5)	新規住宅1棟当たり工事必要単価【市区町】 _(注2) (木造住宅の工事費予定額の合計 /木造住宅の数の合計)	
	木造非住宅 (事務所、工場 建屋)	被害のあった建物数 _(注1) (全壊棟数+半壊棟数×0.5)	新規建物1棟当たり工事必要単価【市区町】 _(注2) (木造非住宅の工事費予定額の合計 /木造非住宅の数の合計)	着工建築物:市区町村 別、構造別(建築物の 数、床面積の合計、工 事費予定額)(平成 23 年度)
	非木造住宅 被害のあった住き (全壊棟数+半壊	被害のあった住宅数 _(注1) (全壊棟数+半壊棟数×0.5)	新規住宅1棟当たり工事必要単価【市区町】 _(注2) (非木造住宅の床面積当たり工事費予定額 ×1棟当たり床面積)	着工建築物:市区町 村別、用途別(大分 類)(建築物の数、床 面積の合計、工事費予 定額)(平成23年度)
	非木造非住宅 (事務所、工場 建屋)	被害のあった建物数 _(注1) (全壊棟数+半壊棟数×0.5)	新規建物1棟当たり工事必要単価【市区町】(注2) (非木造非住宅の床面積当たり工事費予定額 ×1棟当たり床面積)	
	家庭用品	被害のあった住宅の建物数 (全壊棟数+半壊棟数×0.5)	1世帯当たり評価単価【県】	平成 21 年小売物価統 計調査 インターネット小売業 サイト
資産	償却資産	建物被害率(非住宅の全壊 建物率+半壊建物率)	償却資産評価額【県】 (産業分類別従業者1人当たり評価額【市区町】 ×産業分類別従業者数【市区町】)	平成 22 年広島県工業 統計 民間企業資本ストック 年報平成 17 年基準
	棚卸資産 (在庫)	同上	在庫資産評価額【市区町】 (産業分類別従業者1人当たり評価額【市区町】 ×産業分類別従業者数【市区町】)	平成 22 年広島県工業 統計 平成 19 年広島の統計

表Ⅲ 3.71 (1) 資産等の被害53に加筆

(注1)実際には全壊家屋の全てが建替えとならず、一部補修となる場合もある。

(注 2)建替え時の費用は最近の住宅、非住宅1棟当たりの価格と同等であると仮定

定量	量評価対象項目	①被害量	②原単位	原単位の出典
	上水道	断水人口	人口当たり復旧額	阪神・淡路大震災での復 旧額データ
ライ	下水道	管渠被害延長 管渠被害延長当たり復旧額		国土交通省 (東日本大震災の実績)
フライン	電力	被害電柱数	電柱 1 本当たり復旧額(発電所 被害を除く)	電力事業者 (東日本大震災の実績)
	通信	不通回線数 (固定電話)	回線当たり復旧額	阪神・淡路大震災での復 旧額データ
	都市ガス	延べ復旧作業日数	支障戸数1戸当たりの復旧額	東日本大震災の実績
	道路	被害箇所数	箇所当たり復旧額(道路種別)	
	鉄道	被害箇所数	箇所当たり復旧額	各施設管理者
交	港湾	被災岸壁数	岸壁当たり復旧額	(東口本入震灰、阪仲夜)路大震災の実績)
通施	漁港	被害漁港数	漁港当たり復旧額(漁港種別)	
設	その他の 公共土木施設	道路、下水道等と公共土木施設等の復旧費を比較する ことで推計		宮城県「東日本大震災に よる被害額 平成 25 年 3 月 11 日現在」
土地	農地	浸水被害推定面積	浸水被害面積当たり復旧事業費	農林水産省 (東日本大震災の実績)
その他	災害廃棄物	災害廃棄物発生量	1t 当たり処理費用	阪神・淡路大震災での復 旧額データ

表Ⅲ 3.71 (2) 資産等の被害53に加筆

(7) 資産等の被害(建築物)

原単位の算定は、経済産業省(2011)⁷⁰「着工建築物:市区町村別、構造別(建築物の数、床面積の合計、工事費予定額)」及び「着工建築物:市区町村別、用途別(大分類)(建築物の数、床面積の合計、工事費予定額)」を用いて収束計算を行い、区別用途別・構造別工事予定額単価(表Ⅲ 3.72)を算定した。

表Ⅲ 3.72 区別用途別・構造別工事予定額単価

(単位:万円)

ت ا بط	木造住宅	木造非住宅	非木造住宅	非木造非住宅	
区坝	m ² 当たり単価	m ² 当たり単価	m ² 当たり単価	m ² 当たり単価	
広島市中区	15.14	14. 45	19.72	19.36	
広島市東区	14. 79	14. 57	17.46	17.11	
広島市南区	17.79	14.74	19. 52	16.09	
広島市西区	14.71	12.58	20.81	19.44	
広島市安佐南区	14.78	14.77	14. 29	14.46	
広島市安佐北区	12.95	12.60	15.25	14.05	
広島市安芸区	15.79	17. 53	16.98	17.34	
広島市佐伯区	12.73	12.92	14.10	12.67	

70 経済産業省(2011):建築着工統計調査(平成 23 年度).

(イ) 資産等の被害(資産)

a 家庭用品(家財)

家庭用品(家財)の原単位は、1世帯当たりの家庭用品の評価額を1棟当たりの 家庭用品の評価額と読み替えて設定した。

1世帯当たりの家庭用品の評価額は、小売物価統計調査(2009)⁷¹を基本とし、同 調査の対象となっていない一部項目をインターネット小売業サイト等で補足して整 理した。

			家庭用品	十世帯当たり 所有数量 (広島県)	平均物価 (広島市)	 1世帯当たり 平均家庭用品
			品目	(広島県) 平成21年	平成24年	「購入額 平成21年
				台等	H.	千円
設備器具		システムキ	ッチン	537	488, 300	262
		太陽熱温水器	凸 行	82	289, 530	24
		給湯器(ガン	ス瞬間湯沸器を除く)	534	72, 188	39
		洗髪洗面化料	姓台	780	218,090	170
		温水洗浄便图	ž.	855	49, 960	43
家庭用 耐な財	家事用 耐な 財	電子レンジ	(電子オーブンレンジを含む)	1,011	90, 192	91
[0]]/<×1	III])<×1	自動炊飯器	(遠赤釜 I H型)	890	16, 822	15
		冷蔵庫		1, 197	136, 929	164
		電気掃除機		1,347	22, 714	31
		洗濯機		1,394	188, 452	263
		食器洗い機		351	70,000	25
		電動ミシン		541	40,000	22
	冷暖房用	ルームエア	コン	2, 396	186, 813	448
	器具	空気清浄機	: 追加	359	50,000	18
	一般家具	和ダンス(作	乍り付けを除く)	1,059	78, 700	83
		洋ダンス(作	乍り付けを除く)	1,371	78, 700	108
		整理ダンス	(作り付けを除く)	1,588	38, 356	61
		食堂セット	(食卓と椅子のセット)	812	46,600	38
		茶だんす・1	食器戸棚	1,377	64, 606	89
		サイドボー	ド・リビングボード	441	109, 240	48
		鏡台(ドレ	ッサー)	700	164, 970	115
		ユニット家!	具(購入価格が20万円以上)	90	200, 000	18
応接セット (3点セット以上)				289	163, 300	47
保健・医療器	長具	電気マッサー	-ジチェア:追加	188	250,000	47
室内装備・装	支飾品	じゅうたん	(5万円以上のもの)	268	50,000	13
寝具類		ベッド・ソフ	ファーベッド(作り付けを除く)	1,048	43, 825	46
交通・通信	自動車等	国産自動車	軽自動車(660cc以下)	404	1, 013, 250	409
			小型自動車A (661~1000cc以下)	56	1, 612, 800	90
			小型自動車B (1001~1500cc以下)	219	1, 612, 800	353
			小型自動車C (1501~2000cc以下)	225	2, 089, 500	470
			普通自動車A (2001~3000cc以下)	188	4, 221, 000	794
			普通自動車B (3000cc以上)	30	4, 221, 000	127
			ハイブリッド車・電気自動車:追加	12	4,000,000	48
		輸入自動車	輸入自動車A (2000cc以下)	18	1, 983, 000	36
			輸入自動車B (2001~3000cc以下)	9	5, 580, 750	50
			輸入自動車C (3000cc以上)	4	5, 580, 750	22
		オートバイク	7 原動機付自転車(50cc以下)	141	140,000	20
			自動二輪車A (51~125cc以下)	31	205, 370	6
			自動二輪車B (126~250cc以下)	14	435, 240	6
			自動二輪車C (251~500cc以下)	14	570, 050	8
			自動二輪車D (501cc以上)	6	1,092,960	7
	通信機器	携帯電話(]	?HSを含む):追加	1,671	51, 560	86
		ファクシミ	リ(コピー付を含む)	500	15, 760	8
教養娯楽用耐	的人財	薄型テレビ	(プラズマ・液晶・有機ELを含む)	881	88,000	78
		カラーテレ	-	1,136	40,000	45
		ステレオセ	ット又はCD・MDラジカセセット	951	36, 425	35
		ビデオテーこ	プレコーダー (DVD・ブルーレイを含む)	988	58, 307	58
		パソコン		967	128, 687	124
		カメラ(デ	ジタルカメラを含む)	1,202	67, 583	81
		ビデオカメ	ラ(デジタルを含む)	366	66, 652	24
		ピアノ		233	777, 000	181
		書斎・学習相	1. (ライティングデスクを含む)	926	44, 825	42
教養娯楽用品	i i	ゴルフ用具-	-式 (ハーフセットを含む)	360	92, 400	33
1			11	1		5, 568

表亚 3.73 家庭用品評価額

71 総務省統計局(2009):小売物価統計調査.

b 製造業等の資産

製造業の資産は、経済産業省(2009)⁷²の工業統計表「市区町村編」データ、広島県(2010a)⁷³の工業統計、広島県(2007b)⁷⁴の商業統計を使用し、土地、建物を除く機械・設備等評価額及び在庫資産額を算定した。

表Ⅲ 3.74 広島県における製造業等の償却資産評価額(機械・設備等評価額)⁷³

(単位:百万円)

	区域	有形固定資産額 (粗資産額、年末現在高)	機械設備等有形固定資産額 (粗資産額、年末現在高)
ĺ	広島市	3, 650, 613	2, 856, 075

表皿 3.75 製造業の在庫資産額 74 及び卸売・小売業の商品手持額 75

(単位:百万円)

区域	製造業年末在庫
広島市	156, 222

(単位:百万円)

区域	商業商品手持額
広島市	258, 447

c 製造業等以外の資産

製造業等以外の償却資産額は、次により算定した。

その他償却資産額=

産業分類別従業者1人当たり評価額×産業分類別従業者数

このとき、産業分類別従業者1人当たり評価額は、国土交通省(2012b)⁷⁵の治水 経済調査マニュアル(案)を参照して設定した(表III 3.76)。

⁷² 経済産業省(2009):2009年工業統計調査 市区町村編.

⁷³ 広島県(2010a):工業統計調査(平成 22 年)、広島県ホームページ.

⁷⁴ 広島県(2007b):商業統計調査(平成 19 年)、広島県ホームページ.

⁷⁵ 国土交通省(2012b):治水経済調査マニュアル(案).

なお、その他償却資産とは企業等の有形固定資産の内、土地と建物(家屋)を除い たものであり、建物被害の評価との重複計上は回避されている。構築物、機械・装 置、車両、備品等が含まれる。

ただし、不動産業の在庫資産は、不動産業の所有する建物が含まれており、「資 産等の被害額」と重複することから、計上から除外した。

産業別従業者数は、総務省(2009)⁷⁶の経済センサス基礎調査により設定した。

表 五3.76 その他 償却 資産、在	庫資産原単位 ′°
---------------------	-----------

		産業分類	信却	資産	在庫	資産
大公档	由公籍	在業名	92年	23年	22年	27年
カ月	年月現	任末日	112 (新 25	拉语 如	1至4 新 (新	1至(高)(高)
D	19-2	就業	12 788	12 563	3 4 8 9	4 395
E		神经堂	1 411	1 386	2 768	3 4 8 /
F		起决案	4 370	4 344	5.005	4.671
	0	合纠已刻法案	2 383	2 348	1.652	1.54
	10	你到,+//F=, 您料到法士	8 777	8 724	8 478	7.01
	11	総維工業	2 825	2 808	3 503	3 260
	12	衣服・その他の繊維製品製造業	585	582	1 577	1.473
	13	大材・大型品製造業	1 971	1 960	4 407	4 1 1 2
	14	家員,這備品創造業	1 586	1 577	2 750	2.56
	15	バルブ・耕・耕加工品制造業	7.682	7 636	4 265	3 98
	16	印刷,同間演業	2 544	2 5 2 9	1.057	0,00
	17	化学工業	10 21 2	10 152	11 597	10.813
	19	石油制品,石炭制品制造業	24.256	24 149	45 526	42 495
	10	「山田表面」「以表面表現来	2 580	2 550	2.672	2,400
	20	ゴル制具制造業	3,500	3,555	1 000	1.955
	20	コム表記表温末 ため1 常・同制具・毛皮制造業	611	5,000	2 604	2 430
	20	容差,十五制只利法学	5146	5115	5.049	4 714
	22	而未"上口派印派追来 针纲要	14 21 2	14 226	15 710	14.660
	20	款到来 非独全层制造量	0.054	9 204	0.004	0.001
	24	<u>非</u> 妖亚阔我追来 全儒制見制造堂	2 605	2.500	2 550	2 212
	20		2,000	2,350	6.971	8 505
	20	版版版码共改进来 世 使继续服目制 选举	3,327	3,307	4.274	2 6 9 6
	20	电对应的形式温末	2,770	2.102	9.274	3,800
	20	御之如見,デバイフ制法業	5 007	5 061	3,750	2 454
	29	電子的ロークバイへ設定来 輸送田総は県自動決策	5.997	5,901	3,703 A 542	4 2 3 5
	21	補应用版版留具設造来	2 413	2 202	4,542	2 8 2 6
	20	有山城城部長波道米	2 202	2,330	7 220	6 720
C	92	電氣,书7,執供給,東洋要	114 207	112 275	2652	4 507
L L		信款 活行業	5.674	5 574	776	4,037
4		调动业	5.642	5.544	1 000	1 270
- 13 m - 1		迎相末 知志,小志愛	1.057	1.022	2077	2 150
0	10~51	和志幸	2 1 0 6	2147	2,077	4.145
	40 - 04	4.10元末 久 11高 只 小 志 金	1 0 2 1	1 790	1 501	1.65/
	50	台信间面小元来 維物,大胆,色の同日見小海拳	1.021	1,700	2 2 2 2 7	0.010
	67	織物・仏服・身の回り回小元来	1,021	1,709	2,227	2,315
	57	白動車、白転車小事業	1,021	1,709	1 954	1.025
	50	日期半、日転半小元未 安良。じゅう等、地は翌日小吉金	1,021	1,709	1,004	0.45
	60	冬兵 しゅう命 彼然御兵小元来 えの地の小声業	1.021	1,700	1,402	1.551
4	00	くの他の小元来	4,021	1./00	255	1,00
2		立西·休风朱 (天) 赤水金	9,010	4,331	200	11 140
L.		个助理来 約金店,宠治爱	1.070	1 0 2 7	0.007	11,143
N		以及店"信泪来 吃你 短知	1,070	1,037	120	105
N		医尿、抽性 教育 学习支援学	1,4/6	1,450	41	02
B		秋日、千百又抜朱 地合井_ビフ車当	1.12/	1,108	198	241
0		1枚ロリービス争楽	4,018	4,537	205	32
0		リーレス来	4,618	4,537	255	321
к	0	四個	4,618	4,537	255	32

⁷⁶ 総務省(2009):経済センサス基礎調査、総務省ホームページ.

(ウ) ライフライン・交通施設・その他

ライフライン・交通施設・その他の原単位は次のとおり算定した。

a 上水道

原単位は、東日本大震災による復旧が現在も継続しており確定値を算定すること が困難であるため、内閣府(2013)⁵³による阪神・淡路大震災時の実績をもとに次の とおり設定した。

断水人口当たり復旧額=復旧額/供給停止実態=約 55,764(百万円)/約 3,513,000(人)=約 1.59(万円/人)

被害額=断水人口×人口当たり復旧額

b 下水道

原単位は、東日本大震災による復旧額(国土交通省提供の災害査定額)をもとに次 のとおり設定した。

管渠被害延長当たり復旧額(※)=復旧額/被害延長

=約354,980,196(千円)/約1,110,503(m)=約31.97(万円/m)

※復旧額には管渠だけではなく、水処理施設、汚泥処理施設、ポンプ場の被害額を含む。

被害額=被害延長×延長当たり復旧額

c 電力

原単位は事業者算定の東日本大震災の実態データ(東京電力管内、東北電力管内)より次のとおり設定した。

電柱1本当たり復旧額=121.52(万円)

被害額=被害電柱数×電柱1本当たり復旧額

d 通信

原単位は、東日本大震災による復旧が現在も継続しており確定値を算定すること が困難であるため、阪神・淡路大震災時の事例を参考とし、次のとおり設定した。

停止回線当たり復旧額=414,508(円)

被害額=停止回線×回線当たり復旧額

e 都市ガス

被害額は、東日本大震災での仙台市ガス局、塩釜ガスの復旧額(高知県(2013) ⁷⁷)の事例を参考とし、次のとおり設定した。

被害額= 7.4万円/戸

f 道路

被害箇所当たり復旧額は、東日本大震災による復旧額(国土交通省提供の災害査定 額)をもとに次のとおり設定した。

被害箇所当たり復旧額

= 約9,857万円/箇所(直轄国道※高速道路にも適用)

= 約2,153万円/箇所(地方自治体管理)

被害額=被害箇所数×箇所当たり復旧額

g 鉄道

被害箇所当たり復旧額は、東北の鉄道震災復興誌編集委員会(2012)⁷⁸における東 日本大震災での三陸鉄道、仙台空港鉄道等の被害額を参考とし、次のとおり設定し た。

被害箇所当たり復旧額

= 166.2(億円) / 722(箇所) = 約23百万円/箇所 被害額=被害箇所数×箇所当たり復旧額 で算定する。

h 港湾

阪神・淡路大震災、東日本大震災での実態データ(国土交通省)を用い次のとおり 設定した。

岸壁等 = 約 30 億円/岸壁

被害額 = 被災岸壁数×岸壁当たり復旧額

[&]quot;高知県(2003):南海トラフ巨大地震による被害想定について、高知県ホームページ.

⁷⁸ 東北の鉄道震災復興誌編集委員会(2012):よみがえれ!みちのくの鉄道~東日本大震災からの復興の軌跡~.

i 漁港

漁港当たりの被害額については、漁港種別の東日本大震災での被害額を参考とし て、次のとおり設定した。

	1種	2種	3種	特3	4種	計
東日本大震災での被害漁港 数	236	56	16	5	6	319
東日本大震災での被害額 (百万円)	275, 008	270, 902	160, 958	91, 875	21, 992	820, 735
漁港当たり被害額 (百万円/漁港)	1, 165. 3	4, 837. 5	10, 059. 9	18, 375. 0	3, 665. 3	

表Ⅲ3.77 漁港当たりの被害額53

j 水産関連施設

水産関連施設の被害額については、2010 年チリ津波における宮古市のかき筏(垂 下式)被害を参考とし、次のとおり設定した。

かき筏(垂下式)被害額:286,000円/台

漁船は、係留施設の破損による漂流隻数を算出しているが、再利用可能な漁船も 含まれることから、被害額は計上しないこととした。

k その他の公共土木施設

その他の公共土木施設の被害額は、宮城県(2013)⁷⁹における東日本大震災の実績 を参考とし、

A:道路(高速道路、国道、地方道を含む)・港湾・下水道の合計B:その他(河川、海岸、空港等を含む)

の比率から算定した。

被害額=本推計による道路・港湾・下水道の合計×B/A

79 宮城県(2013):東日本大震災の地震被害等状況及び避難状況について 平成 25 年 3 月 11 日現在被害額、宮城県ホームページ.

項目		(千円)		
高速道路		12, 420, 000		
国直轄道路	14	45, 696, 000		
道路	2.	48, 348, 000		
河川	2-	48, 017, 000		
海岸	79, 727, 000			
湾岸	108, 797, 000			
下水道	371, 690, 000			
その他公共土木施設等(空港、砂 防、公園等を含む)	42, 126, 000			
合計	1, 2	56,821,000		
項目	被害額(百万円)	割合		
道路関係、港湾、下水道合計	886,951	70.6%		
上記以外の公共土木施設合計	369, 870	29.4%		
合計	1, 256, 821	100.0%		

表Ⅲ 3.78 宮城県 東日本大震災による被害額53

| 農地・農業用施設等

農地の被害面積は、国土利用の現況データ(平成18年度国土数値情報土地利用細 分メッシュデータ)と津波浸水想定結果を重ね合わせることで算定した。

被害額は、東日本大震災での津波被災市町における農地・農業用施設等の塩害等 による被害の復旧額(内閣府 2013)⁵³を参考とし、次のとおり設定した。

農地・農業用施設等被害額=約3,287万円 / ha × 津波浸水域面積(ha)

農地以外の土地については、東日本大震災では地割れや陥没による被害が発生したものの、南海トラフ巨大地震において被害地域を推計することは困難であるため、 経済被害の推計には含めないこととした。

m 災害廃棄物等

災害廃棄物等処理費用については、東日本大震災における額について現在取りま とめ中であるため、阪神・淡路大震災時の平均的な費用を参考とし、次のとおり設 定した。

災害廃棄物等費用=約2.2万円 / t 被害額=災害廃棄物(t)×2.2万円

イ 生産低下による影響

生産低下による影響は、生産関数を用いて県内総生産の減少を求めた。 生産関数は、「建物被害等による民間資本ストックの喪失」、「人的被害、失業者の 発生による労働力の喪失」、「経済中枢性の喪失」を加味した。

経済中枢性は、県内総生産に占める広島市内総生産の割合が高いことから、広島市の 間接被害額が県全体に大きく影響すると考え、広島市の産業をパラメータとして加える こととした。

県内総生産及び広島市内総生産は、広島県(2010b)⁸⁰、広島市(2010)⁸¹を採用した。

(7) 経済中枢性機能量の整理

経済中枢性は、広島市内の経済中枢性を持つ産業として特化係数が概ね 1.4 以上と なる産業を対象に分析を行った。

手順1 中枢機能を表す指標の抽出
■使用するデータ
広島県及び広島市の産業別生産額,広島市の産業別従業者数
■抽出の考え方

○ 広島県に対して経済中枢性を持つ広島市の産業を抽出するため,特化係数が高い業種を抽出する。(特化係数概ね 1.4 以上)

⁸⁰広島県(2010b):県民経済計算,広島の統計、広島県ホームページ.

⁸¹ 広島市(2010):市民経済計算,広島市の統計、広島市ホームページ.

今回調査では、対象となる産業の従業者数を経済中枢性の代理変数として分析する ため、従業者数を「経済中枢性機能量」と定義することとした。

なお、経済中枢性を持つ産業として抽出した業種の内、"対事業所サービス業"に 所属する産業は、他の産業分類から分岐しておらず、過去に遡り従業者数を整理でき る小分類を抽出して整理した。

広島市における「卸売業」「放送業」「電気・ガス・水道業」等の特化係数が高くなっている。

【経済中枢性を持つ産業(中分類)】

卸売業、通信業、放送業、情報サービス、映像・文字情報製造業、対事業所サービス業、電気・ガス・水道業、

【特化係数の算定式】

広島市の県内における特化係数=

広島市の産業別構成比÷広島県の産業別構成比

産業別構成比=各産業の県内・広島市内総生産・県内・広島市内総生産

表皿 3.79 広島市の広島県に対する特化係数(県内総生産⁸¹、広島市内総生産⁸²)

広島県産業別総生産			広島市産業別総生産			
項目	平 成 22年 度 総生産(百万円)	産業別構成比	項目	平 成 22年 度 総生産(百万円)	産業別構成比	特化係数
1 産業	9, 563, 322	-	1 産業	4, 295, 203	_	
(1)農林水産業	89, 221	-	(1) 農林水産業	7, 879	_	
① 農業	57, 591	0.53	① 農業	4, 492	0.09	0.18
② 林業	16, 301	0.15	② 林業	855	0.02	0.12
③ 水産業	15, 330	0.14	③ 水産業	2, 532	0.05	0.37
(2) 鉱業	5, 382	0.05	(2) 鉱業	220	0.00	0.09
(3) 製造業	2, 421, 044	22.40	(3) 製造業	554, 008	11.50	0.51
(4)建設業	479, 741	4.44	(4)建設業	162, 332	3. 37	0.76
(5) 電気・ガス・水道業	229, 335	-	(5) 電気・ガス・水道業	121, 247	-	-
 ① 電気業 	117, 383	1.09	 ① 電気業 	60, 202	1.25	1.15
 ガス・水道・熱供給業 	111, 952	1.04	 ガス・水道・熱供給業 	61,045	1.27	1.22
(6) 卸売・小売業	1, 497, 851	-	(6) 卸売・小売業	1,040,422	-	-
① 卸売業	890, 416	8.24	① 卸売業	731, 388	15, 18	1.84
② 小売業	607, 435	5.62	② 小売業	309, 034	6.42	1.14
(7)金融・保険業	418, 169	3.87	(7) 金融・保険業	205, 180	4.26	1.10
(8) 不動産業	1, 397, 043	12.93	(8) 不動産業	587, 296	12.19	0.94
(9)運輸業	521, 797	4.83	(9) 運輸業	307, 399	6.38	1. 32
(10) 情報通信業	471, 601	-	(10) 情報通信業	283, 038	-	-
 通信業 	191, 529	1.77	 通信業 	122, 434	2.54	1. 43
 放送業 	28, 880	0.27	② 放送業	23, 417	0.49	1.82
③ 情報サービス,映像・文字情報製造業	251, 192	2, 32	 情報サービス,映像・文字情報製造業 	137, 187	2, 85	1. 23
(11) サービス業	2, 032, 137	18.80	(11) サービス業	1, 026, 182	21.30	1.13
 ① 公共サービス業 	700, 530	6.48	 ① 公共サービス業 	315, 189	6.54	1.01
 ② 対事業所サービス業 	704, 469	6, 52	 	445, 146	9.24	1. 42
 3 対個人サービス業 	627, 138	5.80	 3 対個人サービス業 	265, 847	5.52	0.95
2 政府サービス生産者	1, 055, 426	-	2 政府サービス生産者	406, 279	_	
(1) 電気・ガス・水道業	69, 169	0.64	 (1) 電気・ガス・水道業 	53, 032	1.10	1.72
(2)サービス業	303, 736	2.81	(2) サービス業	83, 604	1.74	0.62
(3) 公務	682, 521	6.31	(3) 公務	269, 643	5.60	0.89
3 対家計民間非営利サービス生産者	206, 000	-	3 対家計民間非営利サービス生産者	115, 975	-	-
(1) サービス業	206, 000	1.91	(1) サービス業	115, 975	2.41	1.26
4 小計 (1+2+3)	10, 824, 749	-	4 小計 (1+2+3)	4, 817, 457	_	-
5 輸入品に課される税・関税	56, 855	0.53	5 輸入品に課される税・関税	25, 302	0.53	-
6 (控除)総資本形成に係る消費税	73, 565	-0.68	6 (控除)総資本形成に係る消費税	26, 125	-0.54	-
7 県内総生産(4+5-6)	10, 808, 039	154.13	7 市内総生産 (=4+5-6)	4, 816, 634	145.00	-

赤字:経済中枢性機能を持つ産業

(イ) 経済中枢性の分析

広島市の経済中枢性機能量は広島県(2010c)⁸²と同じ期間(1980年から2009年まで)の従業者数を収集し、事業所・企業統計が実施されていない年次については、その前後の年の調査結果を基に直線補完により推計した。

次表に整理した経済中枢性機能量を示す。

⁸² 広島県(2010c):人口減少・少子高齢化が広島県の経済に与える影響等調査業務.

	広島市の経済中枢性機能量;従業者数(人)																				
						情報サ	ービス, 映像	ŷ・文字情報	制作業						対事業	所サービス					
年	卸売業	通信業	放送業	情報サー ビス業	インター ネット附随 サービス業	映像情報 製作•配給 業	その他の 映像・音 声・文字情 報に附帯 するサービ ス業	新聞業	出版業	ニュース供 給業	興信所	広告業	物品賃貸 業	広告制作 業	専門サー ビス業	技術サー ビス業	職業紹介• 労働者派 遣業	その他の事 業サービス 業	対事業所 サービス小 計	電気・ガス・ 水道業	合計
1980	65,307	8,849	1,178										1,191		8,301			10,628	20,119	4,202	99,655
1981	69,963	8,258	1,210	2,921									1,357		9,320			10,879	21,556	4,045	107,953
1982	64,372	7,667	1,242	3,118									1,523		10,339			11,130	22,993	3,888	103,280
1983	63,294	7,076	1,274	3,315									1,689		11,359			11,381	24,429	3,732	103,119
1984	62,215	6,485	1,305	3,512									1,855		12,378			11,633	25,866	3,575	102,959
1985	61,137	5,894	1,337	3,709									2,021		13,398			11,884	27,302	3,419	102,798
1986	72,253	5,303	1,369	3,906		177		1,167	667	228	186	1,366	2,187		14,417		129	12,135	30,234	3,262	118,752
1987	69,641	5,472	1,378	4,803		181		1,085	684	226	166	1,577	2,408		15,774		665	13,601	34,025	3,483	121,145
1988	67,028	5,642	1,387	5,701		185		1,004	702	224	146	1,788	2,629		17,131		1,201	15,068	37,817	3,703	123,537
1989	70,403	5,811	1,395	6,598		188		922	719	223	125	1,999	2,850		18,487		1,738	16,534	41,608	3,924	131,918
1990	73,779	5,981	1,404	7,496		192		841	737	221	105	2,210	3,071		19,844		2,274	18,001	45,400	4,144	140,298
1991	77,154	6,150	1,413	8,393		196		759	754	219	85	2,421	3,292		21,201		2,810	19,467	49,191	4,365	148,679
1992	76,984	5,287	1,502	7,773		235		809	756	201	86	2,292	3,479		21,379		2,253	17,837	47,240	3,986	144,861
1993	76,815	4,424	1,592	7,153		275		860	757	184	88	2,163	3,666		21,557		1,697	16,206	45,289	3,608	141,043
1994	76,645	3,561	1,681	6,533		314		910	759	166	89	2,034	3,853		21,735		1,140	14,576	43,338	3,229	137,225
1995	75,536	4,986	1,561	7,126		264		978	782	183	84	2,080	4,048		23,102		729	19,171	49,129	3,352	143,978
1996	74,426	6,410	1,440	7,719		214		1,046	804	200	78	2,125	4,243		24,468		317	23,766	54,919	3,474	150,730
1997	65,312	5,937	1,424	7,803		283		969	840	199	78	2,183	4,110		23,758		288	23,062	53,401	3,477	139,723
1998	69,506	5,463	1,407	7,888		352		892	876	199	79	2,240	3,978		23,048		260	22,358	51,884	3,479	142,025
1999	73,700	4,990	1,391	7,972		421		815	912	198	79	2,298	3,845		22,338		231	21,654	50,366	3,482	144,326
2000	70,616	4,886	1,399	9,484		401		881	975	192	72	2,450	3,831		30,143		221	22,435	59,079	3,421	151,404
2001	67,531	4,782	1,406	10,995	51	380	32	947	1,038	186	65	2,602	3,817		37,948		210	23,215	67,792	3,360	158,565
2002	60,401	4,731	1,350	9,950	78	370	45	825	1,052	171	61	2,537	3,660		30,559		215	25,519	62,490	3,604	145,128
2003	59,226	4,679	1,294	8,905	105	361	58	704	1,067	155	57	2,473	3,503		23,169		220	27,824	57,189	3,847	137,646
2004	58,050	4,628	1,238	7,860	132	351	71	582	1,081	140	53	2,408	3,346		15,780		225	30,128	51,887	4,091	130,164
2005	58,026	4,252	1,295	8,832	199	372	66	625	1,012	167	83	2,272	3,512		16,229		264	31,464	53,740	3,878	132,544
2006	58,002	3,875	1,352	9,804	266	392	61	667	943	194	112	2,136	3,677		16,678		302	32,799	55,592	3,664	134,924
2007	50,815	3,533	1,352	10,063	304	394	89	650	883	174	118	2,039	3,728	338	13,357	13,549	4,197	31,212	68,420	4,144	140,938
2008	55,580	3,190	1,351	10,322	341	395	116	634	822	155	123	1,943	3,778	338	10,036	13,549	8,093	29,625	67,362	4,624	145,016
2009	60,344	2,848	1,351	10,581	379	397	144	617	762	135	129	1,846	3,829	338	6,715	13,549	11,988	28,038	66,303	5,104	149,094

表皿 3.80 広島市の経済中枢性機能量(広島市の特化係数が高い産業)

*本表は、次の統計資料を基に作成した。
 ・平成11年度事業所・企業統計調査

第14表 産業(中分類)、常用雇用者規模(15区分)別事業所数及び従業者数(民営)一都道府県、県庁所在市、人口30万以上市

・平成13年度事業所・企業統計調査

第17表 産業(中分類)、常用雇用者規模(15区分)別民営事業所数及び男女別従業者数一都道府県、県庁所在市、人口30万以上市

・平成16年度 事業所・企業統計調査

第5表 産業(中分類)、従業者規模(15区分)、存続・新設・廃業別民営事業所数及び男女別従業者数-都道府県、14大都市(平成16年・13年)

・広島県 HP 平成 18 年(2006 年) 事業所・企業統計調査

第7表 市区町村別、産業(小分類)別民営事業所数及び従業者数

・広島市 HP 平成 21 年経済センサス-基礎調査 結果報告

第2表 産業(中分類)、経営組織(2区分)、従業者規模(10区分)別事業所数及び従業者数(全事業所)

*統計資料がない年次は、前後の統計資料から線形で推定した。

*対事業所サービスは、分類の分離により、過去の従業者数を把握できない分類がある。

(ウ) 生産関数の分析

広島県の県内総生産(Y)、民間資本ストック(kp)、労働力(L)、広島市の経済中枢 性機能量(C)を用いて生産関数を回帰分析した。その結果、説明変数同士(民間資本 ストック、労働力、経済中枢性機能量)の多重共線性は確認されなかったことから、 生産関数は、広島市の生産が当該産業以外の県内産業の生産性向上を表現していると 仮定し、採用することとした(表Ⅲ 3.81(1)、(2))。

次に分析した生産関数を示し、使用した指標を表Ⅲ 3.82に示した。

【分析した生産関数式】

 $Y = 0.01 \times Kp 0.495 \times L 0.484 \times C 0.18$

回帰統計

重相関 R	0.993			
重決定 R2	0.985			
補正 R2	0.983			
標準誤差	0.021			
観測数	30			
分散分析表				
	自由度	変動	分散	観測された分散比
回帰	3	0.775	0.258	573.777
残差	26	0.012	0.000	
合計	29	0.786		
	偏回帰係数	標準誤差	t	P-値
切片	-4.650	2.491	-1.867	0.073
現実				
民間資本ストック (百万円)	0.495	0.032	15. 289	0.000
現実				
労働力 (人×時間)	0.484	0.111	4.349	0.000
広島市の経済中枢性	0.177	0.000	0.000	0.000

0.177

表 II 3.81 (1) 偏回帰係数

表 II 3.81 (2) 標準偏回帰係数

0.062

2.863

0.008

回帰	統計
重相関 R	0.993
重決定 R2	0.985
補正 R2	0.983
標準誤差	0.129
観測数	30

機能量

分散分析表				
	自由度	変動	分散	観測された分散比
回帰	3	28.568	9.523	573.777
残差	26	0.432	0.017	
合計	29	29		
	標準化偏回帰係数	標準誤差	t	P−値
切片	9.58E-15	2.35E-02	4.07E-13	1.00E+00
標準化Kp	9.42E-01	6.16E-02	1.53E+01	1.65E-14
標準化L	1.46E-01	3.36E-02	4.35E+00	1.87E-04
標準化C	1.49E-01	5.19E-02	2.86E+00	8.19E-03

年	現実 県内総生産 (百万円)	現実 民間資本ストッ ク (百万円)	現実 労働力 (人×時間)	広島市の経済中 枢性機能量 (人)
	Y	Кр	L	С
1980	7, 509, 244	9,001,926	2, 862, 423, 741	99,655
1981	7,669,536	9, 296, 222	2, 861, 269, 758	107,953
1982	7, 822, 994	9, 439, 293	2, 825, 487, 821	103, 280
1983	8,044,874	9, 530, 474	2, 830, 860, 084	103, 119
1984	8, 293, 348	10, 238, 809	2, 882, 504, 473	102, 959
1985	8, 546, 886	10, 839, 584	2, 935, 896, 697	102, 798
1986	8, 771, 833	11, 132, 856	2, 934, 012, 835	118, 752
1987	9, 114, 069	11, 701, 332	2, 962, 228, 004	121, 145
1988	9, 715, 861	13, 164, 317	3, 008, 268, 929	123, 537
1989	10, 347, 159	14, 441, 014	3, 025, 465, 646	131, 918
1990	10, 978, 283	15, 546, 823	2, 984, 416, 954	140, 298
1991	11, 301, 077	16, 245, 210	2,990,557,070	148,679
1992	11, 376, 296	16, 032, 713	2, 942, 804, 754	144, 861
1993	11, 265, 807	15, 719, 055	2, 855, 940, 709	141,043
1994	11, 183, 581	16, 589, 135	2, 853, 491, 190	137, 225
1995	11, 265, 561	17, 396, 538	2, 860, 884, 853	143, 978
1996	11, 539, 816	18, 370, 865	2, 891, 699, 390	150, 730
1997	11, 470, 486	19, 245, 906	2, 844, 190, 001	139, 723
1998	11, 186, 423	18, 690, 509	2, 770, 759, 705	142,025
1999	11, 194, 885	18, 910, 524	2, 694, 683, 871	144, 326
2000	11,601,632	19, 931, 606	2,673,286,092	151,404
2001	11, 558, 525	20, 114, 874	2, 647, 858, 952	158, 565
2002	11, 548, 414	20, 203, 472	2,677,295,706	145, 128
2003	11, 800, 710	20, 662, 280	2, 708, 288, 227	137,646
2004	11, 952, 902	21, 503, 129	2, 685, 293, 936	130, 164
2005	12, 353, 898	22, 278, 056	2, 678, 610, 387	132, 544
2006	12, 422, 247	23, 164, 825	2, 709, 180, 749	134, 924
2007	12, 802, 627	23, 927, 332	2, 668, 902, 344	140, 938
2008	12, 676, 766	23, 151, 917	2, 642, 631, 677	145,016
2009	12, 118, 354	21, 535, 440	2, 452, 128, 114	149,094

表Ⅲ 3.82 生産関数の設定に使用した指標⁸³

【生産関数の地震前インプット値】

県内総生産 Y	:12,118,354(百万円)
民間資本ストック Kp	:21,535,440(百万円)
労働力 L	:2,452,128,114 (人×時間)
広島市の経済中枢性 C	:149,094(人)

(I) 被災による喪失の算定

地震発生後の県内総生産を算定するため、民間資本ストック喪失額及び労働力の喪 失量、経済中枢性の喪失量を整理した。

地震後の県内総生産は、神戸商工会議所(1995)⁸³がまとめた阪神淡路大震災での実績を基に、事業所建物が概ね復旧した5年後まで算定した。

想定シーンは、建物被害が最も多く発生する「夕方18時」を対象とした。

a 民間資本ストック

民間資本ストックは、木造・非木造別に木造非住宅被害率・非木造非住宅被害率と同じ割合で失われるとする。

建物被害の復旧は、神戸商工会議所(1995)⁸³を基に表Ⅲ 3.83のとおり設定した。 広島県内の製造業、非製造業の構成比率は、県内総生産額の産業別の割合から設 定した。

表Ⅲ 3.83 阪神・淡路大震災時の社屋等の建て直しに要する期間と建物復旧率⁸³

	1年後	2年後	3年後	4年後	5~6年後
製造業	58.8%	11.8%	23.5%	2.9%	2.9%
非製造業	53.6%	20.2%	13.1%	2.4%	10.7%

民間資本ストックの喪失額

=被災前の民間資本ストック(木造非住宅)

×各年の年央建物被害率(木造非住宅)

- +被災前のストック額(非木造非住宅別)
- ×各年の年央建物被害率(非木造非住宅)

被災前の民間資本ストックは、表Ⅲ 3.82の 2009 年値を採用した。

各年の年央建物被害率は、製造業、非製造業の構成比率を用いて各年の平均損失 率を分配し、n年後とn₊₁年後の平均値を採用した。

⁸³ 神戸商工会議所(1995):阪神大震災に関する被害及び今後の神戸経済に関する調査結果.

b 労働力

喪失する労働力として、死者及び失業・休業者を算定した。

労働力の喪失量

=被災前の労働力×(死者率+失業・休業者(一時離職者含む)率)

失業・休業者率は、阪神淡路大震災時の実績を基にして設定し、3.6%とした。

被災地域の失業・休業者率

=被災地域の失業・休業者数÷被災地域における被災前の従業者数

=約5.9万人÷163万人=3.6%

被災地域は、兵庫県神戸市、尼崎市、西宮市、芦屋市、宝塚市、伊丹市、川西市、 明石市、洲本市、三木市、三田市、津名郡、三原郡、川辺郡、美嚢郡とされている。

上述した被災地域は概ね震度 6 弱のエリアと重なることから、今回の被害想定では、震度 6 弱以上のエリア及び津波浸水域において 3.6%の労働力が失われるものとして推計を行った。

被災前の労働力は、表Ⅲ 3.82の 2009 年値を採用した。

c 経済中枢性機能量

喪失する経済中枢性機能量として、広島市の地震による死者数を採用した。経済 中枢性機能量は、民間資本ストックと同様の割合で復旧すると仮定した。 被災前の経済中枢性機能量は、表Ⅲ 3.82の 2009 年値を採用した。

ウ 交通寸断による影響

移動とりやめによる損失額、迂回による損失額により、交通寸断による影響を算定した。 移動とりやめによる損失は人流と物流、迂回による損失は物流を対象とした。

人流に関するの損失額は、(2)で記述した生産関数による間接被害額と重複する部分も あると考えられるが、広島県において観光業が重要な産業であるから、項目から除外せ ず算定することとした。

(7) 港湾

港湾は、東日本大震災の実績より復旧期間を1年間として設定し、移動とりやめ及び迂回による損失額を算定した。

対象港湾は、県内の特定重要港湾及び重要港湾とした。

a 移動とりやめによる損失額

物流の移動とりやめによる損失額は、港湾におけるバラ貨物の輸出入の停止によ る損失額を算定した。

港湾の取扱貨物の内バラ貨物は代替港湾による輸送が行われず、輸出入が停止す ると仮定した。

特定重要港湾と重要港湾の取扱貨物量(H23)から、輸出・輸入の品目別にバラ貨物の構成比を算定し、外国貿易年表の品目別輸出額・輸入額(H23)に取扱貨物量の バラ貨物率を乗じて、バラ貨物の品目別輸出額・輸入額を算定した。

県外が搬出先・搬入先となっている割合については、各港湾の貨物搬出先と搬入 先の地域別構成比を「陸上出入貨物調査(H18)」から求め、各港湾の輸出・輸入に 対して被害額から除外した。

港湾の輸出入停止による損失額

=バラ貨物の岸壁別貿易額×岸壁被害率

バラ貨物の貿易額は、広島県(2011c)⁸⁴の広島県の港湾、神戸税関(2012)⁸⁵の 外国貿易年表より想定した。

b 迂回による損失額

迂回による損失額は、港湾機能停止によるコンテナの迂回による損失額を対象と した。

広島県内の特定重要港湾及び重要港湾における被災時の代替港を、コンテナバースであること、十分な貨物取扱能力を有すること等から、神戸港に設定した。

神戸港から県内各港湾までの陸上輸送費用、高速道路利用費用、輸送時間費用を、 コンテナ貨物の迂回による損失額として計上する。

コンテナ貨物の迂回による損失額

=岸壁別取扱コンテナ数×岸壁被害率

×コンテナ1個当たりの陸上輸送費用

迂回が必要となるコンテナ数の推計は、広島港、呉港、福山港における平成 23 年のコンテナ取扱実績(広島県(2011c)⁸⁴)より行った。

コンテナ数に港湾被害率を乗じ、20f と 40f 別に迂回が必要となるコンテナ数を 想定した。

⁸⁴ 広島県(2011c):広島県の港湾(2011 年 12 月).

⁸⁵ 神戸税関(2012):外国貿易年表、税関ホームページ.

陸上輸送費用は、特大車による高速道路利用を想定し、港湾事業評価手法に関する研究委員会(2011)⁸⁶を基に想定した。

また、資本・労働の損失による県内総生産の減少率を上記の被害額に乗じて、被 害の重複計上とならないようにした。

県外が搬出先・搬入先となっている割合については、各港湾の貨物搬出先と搬入 先の地域別構成比を「陸上出入貨物調査(H18)」から求め、各港湾の輸出・輸入に 対して被害額から除外した。

表皿 3.84 港湾別のコンテナ貨物取扱個数 84

◆コンテナ個数	(H23)				(〔単位:個〕
区分	広島港		呉港		福山港	
	20fコンテナ	40fコンテナ	20fコンテナ	40fコンテナ	20fコンテナ	40fコンテナ
輸出	5,492	24,652	9	1	4,113	5, 239
輸入	14, 730	24,051	89	18	17,733	11, 350
計	20, 222	48, 703	98	19	21,846	16, 589

※20f未満のコンテナは20fコンテナとしてカウントした

表Ⅲ 3.85 コンテナ貨物取扱岸壁の被害率

想定地震	マグニチ	被害率(%)			
		ュード	広島港	呉港	福山港
南海トラフ	(陸側ケース)	9.0	39.7	54.8	80.0
安芸灘~伊予灘~豊後水道	(北から破壊)	7.4	74.9	80.0	62.0
五日市断層帯	(北から破壊)	7.0	70.5	39.5	0.0
己斐-広島西縁断層帯(M6.5)	(北から破壊)	6.5	80.0	32.3	0.0
岩国断層帯	(東から破壊)	7.6	26.4	25.0	0.0
安芸灘断層群(広島湾-岩国沖断層帯)	(北から破壊)	7.4	80.0	75.6	0.0

⁸⁶ 港湾事業評価手法に関する研究委員会(2011):港湾投資の評価に関する解説書、みなと総合研究財団.

想定地震		ーガー	迂回が必要なコンテナ数(個)					
		マクニ チュー ド	広島港		呉港		福山港	
			20f コンテナ	40f コンテナ	20f コンテナ	40f コンテナ	20f コンテナ	40f コンテナ
南海トラフ	(陸側ケース)	9.0	2, 179	9, 782	5	1	3, 290	4, 191
安芸灘~伊予灘~豊後水道	(北から破壊)	7.4	4, 114	18, 466	7	1	2, 550	3, 248
五日市断層帯	(北から破壊)	7.0	3, 873	17, 387	4	0	0	0
己斐一広島西縁断層帯 (M6.5)	(北から破壊)	6.5	4, 394	19, 722	3	0	0	0
岩国断層帯	(東から破壊)	7.6	1, 448	6, 497	2	0	0	0
安芸灘断層群 (広島湾-岩国沖断層帯)	(北から破壊)	7.4	4, 394	19, 722	7	1	0	0

表 3.86 迂回が必要なコンテナ数

(1) 人流

a 移動とりやめ

移動とりやめによる損失額は、県外からの人流と県内の人流がとりやめになるこ とを想定して算定した。

南海トラフ巨大地震は、広島県以外においても甚大な被害が予測されることから、 全ての人流が停止することとし、その他の地震は、阪神淡路大震災の実績を踏まえ、 観光客数が3割まで落ち込むこととした。(1年間で復旧する)

とりやめ人流量及び1人当たり出張・観光費用は、広島県(2011b)⁸⁷を採用した。

人流の移動とりやめによる損失額

=とりやめ人流量×1人当たり観光消費額

表皿 3.87 1年当たり総観光客数と1人当たり観光消費額⁸⁷

総観光客数	55,322,000 人/年		
1人当たり出張・観光費用	5,504 円/人		

b 迂回による損失額

県内の迂回は、全体の経済被害額に占める割合が非常に小さく、さらに道路・鉄 道などの被害箇所位置を詳細に想定する必要があることから、今回調査では対象外 とした。

⁸⁷ 広島県(2011b):平成 23(2011)年 広島県観光客数の動向、広島県ホームページ.

エ 波及的被害額

当該産業の資本及び労働力の喪失による生産減少、交通寸断による損失額は、当該産 業の被害額が他の産業に波及的に広がると考えられる。

イ 、ウ で求めた間接被害額を 1 次被害額として、広島県産業連関表を用いて県内 における波及的被害額を算定した。

(7) 推計方法

産業連関表による経済被害波及効果は、「平成 20 年広島県簡易延長産業連関表経済 波及効果分析ツール」(以下「分析ツール」という。)を用いて算定した。

この分析ツールは、ある産業で「需要」が増加した場合、各産業の需要増加を想定 するものであるが、今回調査では、「需要」を「間接被害額」、「需要増加」を「経 済被害波及効果」に置き換えて算定した。

分析ツールにインプットする経済被害額は、産業連関表の「生産額」と同等のもの にする必要があるため、別途算定した間接被害(生産関数による間接被害額)を次の 式により域内生産額ベースに換算した。

産業別間接被害額(粗付加価値額ベース)

=間接被害×(產業別粗付加価値額÷県合計粗付加価値額)

間接被害(域内生産額ベース)

=間接被害÷粗付加価値率

(イ) 波及的被害額の算定

分析ツールに間接被害(域内生産額ベース)をインプットすることにより、粗付加 価値誘発額を算定した。

算定された粗付加価誘発額の内、「一次波及効果」を粗付加価値額ベースに換算し、 これをもって取引関係を通じた波及的被害額とした。

なお、分析ツールにおける消費転換率は、「中国地方消費転換率 0.629611」を採用 した。
- オ 防災・減災対策の効果の試算
- (7) 試算の想定

防災・減災対策の効果は、次の条件で試算した。

【試算の想定】

- ・建物の耐震化率 100%
- ・急傾斜地崩壊危険箇所の対策整備率100%
- ・電熱器具等からの出火を防止する感震ブレーカー等の設置率100%
- ・家庭用消火器等の消火資機材保有率の向上等による初期消火成功率の向上
- (イ) 試算の方法

防災・減災対策の効果は、防災・減災対策によって被害量がどれだけ変化するかを 求め、生産関数を構成する変数(Kp・L・C・S)の変化量を求めた上で、生産低下による 影響の減少分を算定した。

このとき、生産低下による影響としては、資産の喪失、人的被害との軽減による間 接被害額の低減、及び波及的被害額の低減を考慮して算定した。