核兵器攻撃被害想定専門部会報告書

平成19年（2007年）11月9日
はじめに

私はこの報告の取りまとめに当たり、まず、ある内省から始めなければならない。それは、この報告のテーマが、「核兵器攻撃を受けたときの被害想定」を論じるものであり、さらに、この報告の取りまとめが、国民保護法の要求に由来するものであったからである。私は広島の被爆線量の調査を通じて、核兵器による被害を詳細に知る者であり、また、そうした核の被害が二度ともたらされることのないことを願い続けてきた一人である。さらに、被爆者として核兵器の被害からは到底逃れられないことを経験している。そんな私が「核兵器攻撃を想定する」ということが、果して許されるものなのかだろうか。

国民保護法においては、日本が攻撃を受けた場合をいろいろと想定し、対処のための基本指針を示している。こうした想定の中に「核兵器による攻撃」も含まれているのであるが、核兵器攻撃に対する指針としては「爆心地周辺から直ちに離れる」「避難に当たっては、風下を避ける」など、当然なことが述べられている。しかし、そうしたことが、どの程度可能なのかについては何も示されていない。さらに、核兵器攻撃を受けた時、一瞬のうちに溶け、あるいは炭になって死んでいく人たちのことはい言も書かれていない。

こうした指針づくりの背景にあるのは、いったいどのような思惑なのだろうか？核兵器攻撃を受ければ、都市を守ることなどできないことは自明であるにも関わらず、あえて、そのことを封印し、核武装の道を開こうとでもしているのだろうか？国民を守る義務は第一義的には政府にある。地方でやることには限界がある。だとすれば、日本は武力に頼らず、攻撃されないような国を目指す政策を展開するよりいないのではないか？以上が私の内省から導きだされたことであり、遂巡のもとである。

こうした私の考えに対して、広島市の方から次のような発言があった。それは、「本市は、人類史上最初の原子爆弾投下により多大な被害を受けた都市であり、『こんな思いを、他の誰にもさせはならない』という被爆者の声の実現は本市の使命である。国基本指針には、核兵器攻撃がもたらす具体的な被害想定やこれに基づく対応策が示されていないなど、その内容が極めて不十分である。このため、その被害想定等について明らかにするよう国に要望したが、回答が得られていない。また、被爆から61年が過ぎ、核兵器の恐しさを想像できない人たちが増えている。そのため、平和市長会議では、加盟都市に対し、世界の都市で実際に核兵器が使用された場合、その都市で起こる被害やそれに伴う世界への経済面での影響等について想定を行い、広く世界へ伝え、核兵器廃絶に向けた世論の醸成を図っていくと呼びかけている。こうしたことから、本事としては、国民保護計画の策定に当たり、被爆体験や科学的知見に基づく被害想定を行い、被害の甚大さを明らかにする必要があると考えている。」というも
のである。

被爆から61年が経過したが、確かにこの間、幸いにして核兵器は、攻撃目的で使用されたことは一度もない。国民の多くは、いつの間にか核に対する脅威を感じなくなってきている。あるいは、漠然と感じてはいるが、自分自身がその渦中に置かれていることは、気づかずにいるのかもしれない。また、核の拡散が世界的に懸念されるようになった昨今、日本においてさえ、政府や与党の内部から、核武装の道を開きかねない発言が聞くところ、米国の中にも、日本の核武装を警戒する動きが見られる。こうした国内の状況や世界の情勢を垣間見るにつけ、この時期に、あえて核兵器作戦に対する様々な問題点を洗い出すことは、ある意味で有意義なことと思い、この報告の取まとめを引き受けることにした。

幸い、幅広い分野に及ぶ専門家のメンバーとの間で、真剣に議論を交わすことができた。検討に当たっては、被害想定を中心に議論したが、これまで人間が経験したことのない地上爆発にまで言及することができた。そして、どのように議論を重ねても、核兵器作戦による被害は食い止めることなく、そうした事実に対する唯一の解は核兵器の廃絶しかないことが結論づけられた。また、単に核兵器作戦による被害だけでなく、核兵器の有無意義や、世界の現状についても言及することことができたので、今後、核兵器の問題を討議する上で参考になると期待している。

最後に、各専門委員並びに被害想定の計算などで御協力いただいた広島大学その他の機関の研究者の皆さんに、この場をお借りして深く感謝申し上げる次第である。

平成19年（2007年）11月9日

広島市国民保護協議会
核兵器作戦被害想定専門部会
部会長 葉佐井 博 巳
目 次

はじめに

第1章 序 論 ... 1
 1 経緯及び背景 .. 1
 2 目 的 ... 1
 3 本書の構成 .. 2

第2章 核兵器を巡る現状と脅威 3
 1 核兵器を巡る様々な主体 3
 2 長期核保有の動向 ... 4
 3 核兵器使用の可能性の増大 5
 4 事故あるいは誤諜による核兵器攻撃 7
 5 非国家主体の核保有問題 8
 6 日本への核兵器攻撃のシナリオ 9

第3章 核兵器による被害発生のメカニズム 11
 1 核兵器とは ... 11
 2 放射線による被害 .. 13
 3 爆風による被害 .. 18
 4 熱線による被害 .. 19
 5 電磁パルスその他による被害 20

第4章 核兵器攻撃による被害想定 24
 1 被害想定の前提条件 25
 2 4つのケースについて想定される被害 26
 3 人的被害の軽減は可能か－被害想定からの示唆－ 43

第5章 核兵器攻撃災害への対処 50
 1 対処の検討に当たって 50
 2 放射線の防護基準について 52
 3 核兵器攻撃対処の第1ステージ: 核兵器攻撃開始前 54
 4 核兵器攻撃対処の第2ステージ: 核兵器攻撃開始後 57
 5 対処の限界 ... 63
第6章 結 論 ... 64

参考文献 .. 68

付 録 .. 75
付録A 核兵器攻撃被害想定専門部会委員名簿等 .. 77
付録B 核兵器の脅威と現状にかかわる諸データ.. 80
付録C 死傷者推計の方法について ... 89
付録D 放射線、爆風及び熱線に関する試算値等... 115
付録E 核兵器廃絶に向けた提言 .. 130

索 引 .. 147
表 目 次

表3-1 放射線被曝線量を推定するための方法... 15
表3-2 放射線の人体影響に変化を及ぼす要因... 16
表3-3 被曝線量と急性放射線症.. 17
表3-4 放射線の1回照射量と身体影響... 17
表3-5 急上昇し長時間継続する圧力パルスが人体に与える直接の影響に関する
試験的な基準... 19
表4-1 想定した4つの核兵器攻撃.. 25
表4-2 想定される初期放射線の影響範囲.. 27
表4-3 想定される爆風の影響範囲... 27
表4-4 建物及びその被害程度についての定義... 28
表4-5 想定される熱線の影響範囲... 29
表4-6 想定される火災の発生範囲... 30
表4-7 放射性降下物からの残留放射線量.. 33
表4-8 空中爆発による推計死傷者数.. 35
表4-9 地表爆発による推計死傷者数（放射性降下物の影響を除く）.............................. 38
表4-10 放射性降下物の影響をシミュレーションする上での仮定..................................... 40
表4-11 放射性降下物の影響に関するシミュレーション結果.. 40
表4-12 放射性物質のガマ線による被曝の低減係数.. 42
表B-1 地球上の核弾頭一国別詳細... 80
表B-2 核脅迫事件の例.. 85
表C-1 放射線の急性期の影響に関する基準（全身被曝）.. 91
表C-2 初期放射線の遮蔽係数（透過率）... 92
表C-3 後障害の発症基準.. 92
表C-4 熱傷の発症基準... 93
表C-5 広島原爆における推計死傷者数... 93
表C-6 広島原爆における遮蔽の有無別死亡・不明者数... 94
表C-7 広島原爆における距離別外傷発生頻度... 94
表C-8 木造・非木造別に内部外傷率（表C-7の按分）... 95
表C-9 16キロトンの核兵器の空中爆発での「屋外一開放」急性期死傷率の設定........ 96
表C-10 16キロトンの核兵器の空中爆発での「屋外一遮蔽」急性期死傷率の設定....... 96
表C-11 木造建物内での死傷率... 97
表C-12 16キロトンの核兵器の空中爆発での「屋内—木造」急性期死傷率の設定...
... 97
表C-13 非木造建物内での死傷率... 100
表C-14 16キロトンの核兵器の空中爆発での「屋内—非木造」急性期死傷率の設定 ... 99
表C-15 16キロトンの核兵器の空中爆発における推計死傷者数（急性期）の比較...
... 101
表C-16 4.5km圏の推計昼間人口分布 .. 101
表C-17 参考文献[41]での設定死傷率 ... 102
表C-18 16キロトンの核兵器の空中爆発での推計後障害発症数 102
表C-19 1メガトンの核兵器の空中爆発での「屋外—開放」急性期死傷率の設定
... 103
表C-20 1メガトンの核兵器の空中爆発での「屋外—遮蔽」急性期死傷率の設定
... 103
表C-21 1メガトンの核兵器の空中爆発での「屋内—木造」急性期死傷率の設定 ...
... 104
表C-22 1メガトンの核兵器の空中爆発での「屋内—非木造」急性期死傷率の設定 ..
... 104
表C-23 1メガトンの核兵器の空中爆発における推計死傷者数（急性期）の比較
... 105
表C-24 1メガトンの核兵器の空中爆発での推計後障害発症数 105
表C-25 16キロトンの核兵器の地表爆発での「屋外—遮蔽」急性期死傷率の設定 ..
... 107
表C-26 16キロトンの核兵器の地表爆発での「屋内—木造」急性期死傷率の設定 ..
... 107
表C-27 16キロトンの核兵器の地表爆発での「屋内—非木造」急性期死傷率の設定...
... 108
表C-28 16キロトンの核兵器の地表爆発における推計死傷者数（急性期）の比較 （残留放射線の影響を除く）.. 108
表C-29 16キロトンの核兵器の地表爆発において、半径3kmに放射性降下物が一様に堆積したと仮定した場合の脱出時ガンマ線量 ... 109
表C-30 16キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく急性期の死傷者数の試算結果 .. 110
表C-31 16キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく後障害発症数の試算結果（7時間後脱出の場合）............. 110
表C-32 1キロトンの核兵器の地表爆発での「屋外一遮蔽」急性期死傷率の設定... 111
表C-33 1キロトンの核兵器の地表爆発での「屋内一木造」急性期死傷率の設定... 112
表C-34 1キロトンの核兵器の地表爆発での「屋内一非木造」急性期死傷率の設定... 112
表C-35 1キロトンの核兵器の地表爆発における推計死傷者数（急性期）の比較（残留放射線の影響を除く）................................. 113
表C-36 1キロトンの核兵器の地表爆発において、半径1kmに放射性降下物が一様に堆積した場合の脱出時ガンマ線量 113
表C-37 1キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく急性期の死傷者数の計算結果.................. 114
表C-38 1キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく後障害発症数の計算結果.............................. 114
表D-1 16キロトンの核兵器の空中爆発（爆発高度 600m）での初期放射線... 115
表D-2 1メガトンの核兵器の空中爆発（爆発高度 2,400m）での初期放射線... 116
表D-3 16キロトンの核兵器の地表爆発（爆発高度 1m）での初期放射線... 117
表D-4 1キロトンの核兵器の地表爆発（爆発高度 1m）での初期放射線... 118
表D-5 16キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径3kmに一様に拡散した場合の地表 1m の高さでの残留放射線（Sv）... 119
表D-6 16キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径3kmに一様に拡散して皮膚に付着した場合の線量（Sv）... 120
表D-7 16キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径110mのクレーターに降下した場合の地表 1m の高さでの残留放射線（Sv）... 121
表D-8 1キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径1kmに一様に拡散した場合の地表 1m の高さでの残留放射線（Sv）... 122
表D-9 1キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径1kmに一様に拡散して皮膚に付着した場合の線量（Sv）... 123
表D-10 1キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径40mのクレーターに降下した場合の地表 1m の高さでの残留放射線（Sv）... 124
表D－11 16キロトンの核兵器の空中爆発（爆発高度 600m）での爆風及び熱線......
.. 125
表D－12 1メガトンの核兵器の空中爆発（爆発高度 2,400m）での爆風及び熱線......
.. 126
表D－13 16キロトンの核兵器の地表爆発（爆発高度 1m）での爆風及び熱線 ... 128
表D－14 1キロトンの核兵器の地表爆発（爆発高度 1m）での爆風及び熱線 129

図目次

図4－1 参考文献[31]による放射性降下物の拡散範囲と線量率の予測結果 33
図4－2 米国の核実験で観測された放射性降下物の拡散範囲.......................... 34
図4－3 16キロトンの核兵器が高度600mで爆発した場合の各種影響範囲 36
図4－4 1メガトンの核兵器が高度2, 400mで爆発した場合の各種影響範囲 37
図4－5 1キロトンの核兵器が高度1mで爆発した場合の各種影響範囲............... 38
図4－6 16キロトンの核兵器が高度1mで爆発した場合の各種影響範囲 39
図4－7 地表爆発の場合に発生する放射性降下物の拡散スケール 41
図C－1 昼間人口の分類 ... 90
図C－2 原子爆弾災害分布（広島地区） .. 95
第1章 序 論

1 経緯及び背景

平成16年（2004年）6月、「武力攻撃事態等における国民の保護のための措置に関する法律」（以下「国民保護法」という。）が制定され、同法に基づき、平成17年度（2005年度）末までに、国の行政機関及び全国の都道府県において、国民保護計画が策定された。

これを受けて、全国のほとんどの市町村において、消防庁が示した「市町村国民保護モデル計画」を参考に、都道府県国民保護計画に基づく国民保護計画が策定されている。

国は、この計画策定に当たり、「国民の保護に関する基本指針（平成17年（2005年）3月閣議決定）」や「市町村国民保護モデル計画（平成18年（2006年）1月消防庁作成）」を示し、想定される武力攻撃事態の一つとして「核兵器による攻撃」を挙げているが、核兵器攻撃がもたらす具体的な被害想定やこれに基づく対応策は示されていない。

このままでは、核兵器のもたらす被害について大きな誤解を定着させてしまうおそれがあると考えた広島市は、誤解を払拭するため、国の責任において具体的な被害想定を行い、その結果及び対応策を示すよう求めてきたが、国からの回答が得られなかった。このため、人類史上最初の原子爆弾投下による被害を受けた都市の使命として、広島市国民保護計画の策定に当たり、被爆体験や科学的知見に基づく被害想定を独自に行い、被害の甚大さをあらためて明らかにすることにしたものです。

2 目 的

以上の様々な経緯及び背景の下、当専門部会は、①核兵器攻撃による被害想定に関すること及び②核兵器攻撃による被害想定の結果を踏まえて広島市がとるべき措置等に関することについて検討を行い、広島市国民保護協議会（以下「協議会」という。）の会長（広島市長）に対し報告を行うため、協議会に示されたものである。

このため、当専門部会では、今日、広島が核兵器による攻撃を受けた場合に受ける被害を、いくつかの仮想的なケースについて検討し、そうした状況の中で、国の基本指針その他に示されている対処措置等が有効に機能し得るかどうかについて評価を行った。
第1章 序論

3 本書の構成

本報告では、まず、被害想定とこれに基づく対処措置の評価に先立って、第2章で核兵器の脅威に依然さらされている世界の現状を、第3章で核兵器攻撃がもたらす影響について、それぞれ概観する。その上で第4章において、今回選択した4つの仮想的なケース、すなわち①昭和20年（1945年）8月6日の広島に対する原爆投下と同じ条件である「16キロトンの核兵器が都心上空600mで爆発するケース」、②「1メガトンの核兵器が都心上空2,400mで爆発するケース」、③「16キロトンの核兵器が都心部の地表で爆発するケース」及び④「1キロトンの核兵器が都心部の地表で爆発するケース」それぞれについて被害想定の結果を紹介するとともに、対処上の留意点を掲げる。そして第4章で示した結果に基づき、国の基本指針その他に示されている対処措置の評価等を第5章で総合的に行う。第6章では、対処措置の有効性等に対する当専門部会としての結論を示す。

なお、本文中[]で表示した数字は、68ページ以降に掲載した引用文献の番号である。また、基礎データや被害推定の具体的な方法等については、付録として巻末に一括して掲載した。

本書で用いている主な単位

【核兵器の威力】爆発エネルギーをTNT（トリニトロトルエン）火薬の量に換算して表す。1キロトン（kt）はTNT火薬1,000ton分の威力、1メガトン（Mt）は100万ton分の威力である。

【放射線】本書では、放射線の種類及びそのエネルギーによって放射線の人体への影響が異なる点を考慮して人体が浴びた放射線の量を表す等価線量の単位として、Sv（シーベルト）を用いている。1Sv＝1,000mSvである。一方、Gy（グレイ）とは、放射線が当たった物質中にどれだけ放射線のエネルギーが吸収されたかを表す吸収線量の単位であり、この値に人体への影響を考慮した値（ベータ線及びガンマ線では1、アルファ線では20、中性子線では5〜20の放射線荷重係数を吸収線量に乗じる）がSvである。本書では中性子の放射線荷重係数を10として計算している。

【圧力】本書では、引用文献に用いられている単位が主としてpsi（1平方インチ当たりの重量ボンド）であるため、psiと国際系の単位であるkPa（キロパascal：1psi=6.89476×10^5kPa=6.89476kPa）を併記して用いている。

【熱量】熱量についても、圧力と同様の理由から、旧単位であるcal（カロリー）と現在の単位であるJ（ジュール：1cal=4.18605J）を併記して用いている。1MJ＝100万Jである。
第2章 核兵器を巡る現状と脅威

核兵器攻撃による被害想定を行う前提として、核兵器を巡る世界の現状について要約しておく。

1 核兵器を巡る様々な主体

現時点で、核兵器を用いた攻撃の可能性を考察するとき、核兵器の保有に関して6つの主体を考えておく必要がある。主体には国家主体と非国家主体がある。

(1) 公然たる核保有国

米国、ロシア、イギリス、フランス、中国の5か国。昭和45年（1970年）に発効した核不拡散条約（NPT）1において核兵器国と分類された。

(2) NPT非加盟の核保有国

インド、パキスタン、イスラエルの3か国。インド、パキスタンは核実験を行い核保有を宣言している。イスラエルは核保有を否定している。国際社会はこれら3か国を事実上の核兵器保有国と見なしている。3か国ともNPTに加盟していない。

(3) 核保有主張国

朝鮮民主主義人民共和国内（北朝鮮）。核実験を行い核兵器保有を宣言しつつ、同時に核兵器放棄の交渉も行っている。国際社会の多くは、まだ事実上の核保有国と見なしていない。NPTに加盟していたが脱退した。

(4) 核兵器に依存する非保有国

ドイツ、イタリアなどNATO（北大西洋条約機構）2加盟の非核兵器国23か国、日本、韓国、オーストラリアの26か国。NPTに非核兵器国として加盟しているが、公的に自国の安全保障を他国核兵器に依存する旨の政策を採用している。

(5) 核武装する可能性のある非国家主体

現在のところ、国家以外の集団が核兵器で武装したという明確な情報はない。しかし、その可能性が懸念され、それを防止することが国際社会の重要な関心事

1 米国、ロシア、イギリス、フランス、中国の5か国を核兵器国と定め、核兵器国以外への核兵器の拡散の防止、核不拡散条約の遵守、核兵器を用いた攻撃の可能性を考察する。核不拡散条約（NPT）は、原子力の不拡散に関する条約。1968年（昭和43年）に発効。日本は1976年（昭和51年）批准。条約締結国は、現在190か国、平成19年（2007年）現在。非核兵器国は、インド、パキスタン、イスラエル。北朝鮮は、平成15年（2003年）1月に脱退を表明。

2 昭和24年（1949年）に北大西洋条約機構（NATO）加盟の非核兵器国23か国、日本、オーストラリアの26か国。NPTに非核兵器国として加盟しているが、公的に自国の安全保障を他国核兵器に依存する旨の政策を採用している。
第2章 核兵器を巡る現状と脅威

になっている。
(6) 核兵器に依存しない非保有国
その他のNPT加盟の非核兵器国であり、核兵器の非保有を誓約するだけでなく、他国の核兵器に明示的に依存する安全保障政策をとっていない。国連加盟192か国にパチカン市国（ホーリーシー）を加えた193か国のうちの158か国という圧倒的多数（82%）の国家がこれに属する。そのうち109か国は非核兵器地帯条約に署名3するなど積極的に核兵器依存を否定している。

2 長期核保有の動向
現在においても「公然たる核保有国」は、核兵器は自国の安全保障のために不可欠であるとして、核兵器保有を長期にわたって継続する意思を表明している。
米国政府は最新の「核態勢見直し（Nuclear Posture Review）」（平成14年（2002年）1月発表）において、「核兵器は米国の防衛能力に決定的な役割を演じる」と述べ、核兵器の更新について詳細な検討を行った4。また、ごく最近の平成19年（2007年）7月に米議会に提出されたエネルギー長官、国防長官、国務長官3者連名の報告書「国家安全保障と核兵器」[2]は、「予見できる未来にわたって核兵器の必要性は継続するとの結論に達した」と述べている。ロシアのプーチン大統領は、最近の談話においてロシアの国家安全保障において核兵器の役割は重要であり、今後数十年ロシアの核抑止力は確固としていると述べた5。フランスのシラク大統領（当時）は、1年半前の演説において「核抑止力は常に安全の根本的な保証である」と述べた6。イギリスのブレア首相（当時）は、トリエンド核兵器システムの更新を提案した平成18年（2006年）12月の白書において、核兵器を保有し続けること

3 南太平洋非核地帯に加盟しているクック諸島とニウエは、ニュージーランド自治領であるので数えていない。また、オーストラリアは南太平洋非核地帯に加盟していたが、核兵器に依存する政策をとってるのでこの数に入らない。モンゴルは国連総会決議で非核地帯を得ているので数えた。
4 「核兵器は、米国、同盟国、及び友好国の防衛能力において決定的な役割を演じる。...核能力がもつユニークな特性は、戦略的、政治的目標を達成するために重要なあらゆる種類の敵の標的を危険状態にさらす選択肢を米国に与えることにある。」[1]
5 「我々の国家安全保障において、また力の均衡を保ち世界の戦略的安定を確保する点において、核戦力は重要な役割を担っている。...今後数十年、我々の核抑止力は確保としていること、そして、ミサイル防衛システムができたとしても、それを突破することも含めて、我々はどんな任務も解決できること...」[3]
6 「何が起こっても、我々の死活的利益は確実に守られているということこそ、核抑止力に与えられている役割であり、それは我々の予防戦略から直接に発生し、予防戦略の究極の表現でもある。なぜならば、現在の懸念と将来の不確実性に直面する中で、核抑止力は常に安全の根本的な保証であるからである。」[4]
3 核兵器使用の可能性の增大

とによってのみ、脅迫や攻撃を抑止できると述べた。中国だけは核兵器が安全保障上重要であると強調していないが、報復攻撃のための核兵器の保持という考え方を持ち続けている。

このような、「公然たる核保有国」は核兵器を国家安全保障の基本となる兵器であると位置づけ、核兵器の更新、ないし近代化を継続している。

米国は、「信頼性代替弾頭（RRW）」計画によって現在よりも簡素で頑丈な新設計の弾頭の開発・研究を開始するとともに、新弾頭の生産も視んで核兵器複合体を一新するための「コンプレックス2030」計画を開始している[7]。2030年に完成する目標であるから、その後数十年にわたっての核保有計画であると言える。ロシアは、米国のミサイル防衛を突破する能力をもった軌道変更可能性ミサイルの開発に取り組んでいる[3]。フランスは、新型の潜水艦発射弾道ミサイルを開発中であり、その初めての発射実験を平成18年（2006年）11月に行った[8]。中国は、固形燃料の新型大戦間弾道（ICBM）や次世代のミサイル発射潜水艦とそれに搭載する潜水艦発射ミサイルを開発中であると伝えられる[9]。イギリス政府は、保有する唯一の核兵器であるトライディント・ミサイル・システムの更新を提案したが、それにって少なくとも2050年までの核兵器保有を計画していると考えられる[5]。

このような長期保有の構えの中で、現在、地球上には約26,000発の核弾頭が存在していると考えられる。その詳細データを付録B表B－1に示す。

「公然たる核保有国」のこのような半永久的とも言える核兵器保有計画は、「NPT非加盟の核保有国」や「核保有主張国」に対して、同様な長期保有や継続保有の思考を促している可能性がある。さらには、非国家主体が核兵器保有を目指す誘因ともなっているであろう。

3 核兵器使用の可能性の増大

「公然たる核保有国」は核兵器の使用を前提とした政策をとっている。「抑止が働くためには、抑止力が使用可能であり、実際に使用されるものであり、使用された場合には効果的である、という保証がなければならない」[10]というのが核抑止に関する

7 「われわれは、核兵器を保有し続けることによってのみ、将来的にこれらの脅威を抑止しろう。通常戦略では、これと同じ抑止効果を得ることはできない。したがって、われわれは、英国の核戦力は、核武装した敵によるわが国の生存と利益に対する脅威や攻撃を抑止するための力の不可欠の部分として果たし続ける役割があると考える。よってわれわれは、信頼に足る抑止力を2020年代以降も保持するために必要な措置をとることを決断した。」[5]

8 「中国は一貫して核兵器の第一不使用政策を堅持し、核兵器の開発に対して極端に抑制した態度をとってきた。中国は核兵器競争に加わったことは一度もあり、核兵器を海外に配備したことでも、中国の限られた核反応能力は、他の国の核兵器攻撃の可能性に対する純粋に抑止のためのものである。」[6]
第2章 核兵器を巡る現状と脅威

る初步的な理論であることから考えると、核保有国が使用を前提として体制を整えていることは当然のことと考えられる。しばしば、核兵器は「政治的な兵器」であると言われるが、このような使用体制を前提とした表現であることを忘れてはならない。

なかでも米国とロシアは、警報発射という冷戦時代に敷かれた高度な警戒体制を今日も維持していると考えられている。米国の世界安全保障研究所（WSI）所長であり、元米国の核司令官であったブルース・プレア氏によれば、今日でも米国は1,600～1,700発、ロシアは1,000～1,200発の核弾頭をこのような一触即発の発射体制に置いていると推定される[11]。

このような状況に加えて、平成13年（2001年）の9.11事件以来、核兵器の使用を想定したシナリオが拡大され、核兵器を使用する「しきい」が低くなったと懸念されている。

第1に、地下の要塞、司令部、工場などを破壊するための核パンカーバスター9や、生物・化学兵器を破壊するためのエージェント破壊兵器（ADW）など、抑止目的ではなくても戦場で実際に使うことを目的とした核兵器の開発が米国で計画された[1]。幸い、米国議会はこの数年これらの兵器の開発を許していない。しかし、戦場使用という考え方への傾斜は続いている。

これと関連するが、第2に、米国において通常兵器と核兵器を一体化して運用するグローバル・ストライク戦略が採択された。グローバル・ストライク戦略は前述した平成14年（2002年）の「核戦力見直し」に端を発し、地球規模の長距離・精密攻撃の能力を、核・非核一体の概念として設定し、その実行体制を築くものである10。一つの例として、潜水艦発射ライデント・ミサイルの核弾頭の一部を通常弾頭に置き換える計画が提案された[13]。グローバル・ストライクのための司令部は、平成17年（2005年）1月に米国戦略軍の中に設置され、同年8月に任務を開始した[14]。このような考え方では、核兵器と通常兵器の間の区分をあいまいにし、核兵器使用の「しきい」を低くする結果を招くと指摘されてきた。

第3に、米国は核兵器を先制攻撃手段として用いる可能性が暴露された。すなわち、平成17年（2005年）3月付けの米国戦略軍の「統合核作戦教義（草案）」が、核兵器の先制使用を想定していることが暴露されたのである[15]。米議員などの強い反対のため問題の文言は最終版の「教義」から削除されたが、内容は変わっていないと考えられている。このような教義は、多くの国が同様な教義を採択したり、対抗

9 地下深くに埋設された堅固な標的を破壊するため、地面やコンクリート等を貫通させた後に核弾頭を爆発させるもの。貫通能力には限界があり、使用された場合には、地上の広範囲に大量の放射性物質が散らばることになる。地中貫通型核兵器（爆弾）などもこれと呼ばれる。
10 アーキンによれば、大統領指令に述べられたグローバル・ストライクの定義は「戦場や国家の目的のために、迅速で、長距離の射程を持ち、精密な、力学的効果（核及び通常兵器）及び非力学的効果（宇宙や情報の諸要素）を生み出す能力」である[12]。
手段を強化する結果を生むことになり、そのことによって核兵器使用の可能性をさらに高めるという悪循環を生むことになる。

第4に非核兵器国に対しては核兵器による攻撃は行わないという核保有国による「安全の保証」（消极的安全保証）が対テロ戦争の中で形骸化している。上記の米国「統合核作戦教義（草案）」もその一例であるが、平成14年（2002年）の米国「大統領指令17：大量破壊兵器と闘う国家戦略」は、大量破壊兵器の使用への報復には核兵器攻撃を辞さないことを明記していることが明らかになっている[16]。フランスのシラク大統領（当時）も平成18年（2006年）の演説で同様な趣旨の演説を行った11。

なお、ジョゼフ・ガーソン著『帝国と爆弾—米国は世界支配のためにどのように核兵器を使用するか』[17]には、第二次世界大戦後における核保有国による核脅威のケースを表示しているが、核兵器が存在する限り、核兵器使用の脅威が存在し続けていることを示唆している。（詳細は付録B表B－2参照）

4 事故あるいは誤謬による核兵器攻撃

核兵器の政策的な使用の可能性が増加していることとは別に、意図しない事故や誤謬の結果として、核兵器攻撃が起こり得る。核兵器が存続し使用可能状態に保持されている限り、このような人為的な悲劇の可能性は否定期できない。

まず、3で述べたような「警報即発射」体制がとられていることによって、誤った警報を核ミサイル攻撃と誤認して、核のボタンが押されてしまう危険がある。米国の場合、警報をキャッチしてから常駐専門官が初期判断を下すのに3分、次に大統領と最高顧問の緊急電話会議が招集され、専門官が状況説明に許される時間が0.5分、会議が結論を出すまでに許される時間は、状況によってゼロから12分と考えられている。ロシアはもっと厳しい時間の制約下に置かれているであろう[18]。

11 演説[4]に次の所がある。「テロリストを手段として使用する国の指導者、同様にいかなる方法であれ大量破壊兵器を使用することを考えている国の指導者は、我々の側からの確固たる適応した反撃にさらされることを理解しなければならない。」
第2章 核兵器を巡る現状と脅威

と解される信号を受信した。システムが正常であると確認されたが、ベトナム中佐は誤信号であると判断し危機を回避することができた[20, 21]。また、昭和55年（1980年）6月3日、ネブラスカ州オマハの戦略空軍司令部のコンピュータ表示スクリーンに、「コロラドスプリングスの戦闘司令センター「ソ連が複数の大陸間弾道ミサイルと潜水艦発射弾道ミサイルで米国に核兵器攻撃を加えた」という信号が表示され、核爆弾搭載機と核戦争用の戦闘司令部に乗員が乗り込んでエンジンを始動、ハワイからはいちはやく戦闘司令部が離陸する緊迫した事態になったが、3分後、コロラドスプリングスの北米防空司令部のコンピュータ故障と判断して事態が落ち着いたといわれる[22]。その後米国上院に提出された報告書によると、昭和54年（1979年）1月1日から昭和55年（1980年）6月30日までの1年半の間に、米国本土がミサイル攻撃を受けていないという信号が147回発生、うち4回については「脅威評価会議」が召集されたと言われている[23]。

このような状況に加えて、前述の米国のグローバル・ストライク戦略が、核兵器攻撃の誤判断を生む可能性を高めている。前述のような潜水艦発射弾道ミサイルの一部を核弾頭から通常弾頭に置き換えて瞬時の長距離精密攻撃を行う計画が実行されると、攻撃を受ける側は通常兵器攻撃を核兵器攻撃と理解し、反撃の行動に出る危険が増大する。現在、米国とロシアや中国との間では事前通告制度が継続しているが、グローバル・ストライクが実行されるとき、事前通告の時間的余裕がなかったり、通告が適正に伝達されないような事故が否定できない。さらに相手が新しい核保有国、とりわけ北朝鮮の場合などは、そのような前提が存在しないだけ、より危険なことが指摘されている[24]。

5 非国家主体の核保有問題

非国家主体が核兵器を取得する可能性については、その危険が強く指摘されているが、対処行動の計画立案しようとしても、準備できるような情報はほとんどない。むしろ、現時点における予防努力は、非国家主体が核兵器を取得するに至る初期ルートを断つことに集中している。たとえば、米外交問題評議会の最新報告は、次のような3つのルートを想定し、それを遮断するためにとるべき対策を詳細に検討している[25]。

（1）核兵器を盗む

ここではパキスタンとロシアの核兵器が、非国家主体の手にわたることが、とりわけ心配されている。盗まれたための管理体制の強化と盗難も使用できない工夫を核兵器に施すことが求められる。
核兵器を購入する

売却側として、ある政治状況におけるパキスタンがとりわけ懸念されている。様々な外交努力の他に、使用された核兵器から核兵器の起源が特定できるような手段が研究されている。

核兵器を自力で製造する

この場合、核兵器製造に不可欠であるプルトニウムか高濃縮ウランを、非国家主に独自で生産する能力を持つことはほぼ不可能であると考えられる。したがって、これらの物質の入手経路を断つことが重要となる。

非国家主体に核兵器や原料物資が渡されることを阻止するために、平成16年（2004年）4月に国際安保理決議1540（2004）が採択された。この決議によって、国際社会には、国際加盟国の市民や組織が非国家主体に大量破壊兵器用物資や技術を供与したり、それらの取得をはらう助したり、取得のための資金を提供したりすることを禁止する国内法の制定が義務付けられた。

安保理決議1540の実効性を高めることが含め、3つのルートを遮断するための国際的な努力は、いくつかの国の核兵器保有が法的に許容されている現状の世界におけるよりも、核兵器保有がすべての国に法的に禁止されている世界における方が、はるかに有効かつ効率的に実施できることを指摘しておきたい。

日本への核兵器攻撃のシナリオ

以上のような核兵器の現状において、核兵器が人類に与えている脅威は極めて大きい。しかし、それは、日本という特定の国に向けられている脅威というよりも、人類全体が巻き込む可能性のある脅威である。ひとたびいずれかの国に対して核兵器が使用されれば、その国と近隣に直接的な大被害が発生するのみならず、その威力の救に様々な予測のつかない連鎖を引き起こすと考えられるからである。別国への新しい核兵器攻撃を招く可能性を含め、世界は軍事的、政治的、経済的、社会的、文化的な甚大な混乱と不安定に陥ることが考えられる。

このような核兵器を使用した場合の国際的な影響は甚大であるため、ある国が特定の国を攻撃しようとする場合、より安価で確実かつ効果的な他の攻撃方法を考えるであろう。核兵器攻撃という選択が、単純に2国間の関係が原因となって発生することは考えにくいであろう。例えば、北朝鮮脅威論のような単純な認識で北朝鮮が日本の核兵器攻撃という想定が安易になされがちであるが、実際にはもっと複雑な国際関係が絡みながら情勢は推移する。

12 国連安保理決議1540（2004）の邦訳は、次の外務省のホームページで読むことができる。
第2章 核兵器を巡る現状と脅威

したがって、日本のみを取り出して核兵器攻撃を受ける可能性を議論するという問題設定は必ずしも適切ではない。ここでは、そのような前提を踏まえた上で、日本が直接の核兵器攻撃の標的となるシナリオを大別的に整理しておく。

(1) 国家主体による攻撃

日本が核兵器攻撃を受ける可能性があるとすれば、それは世界で最も強力な核兵器保有国であり、かつ攻撃的な核兵器政策をとる米国と同盟関係にあることに関わっていることが多いであろう。在日米軍基地・部隊が攻撃対象となることも、自衛隊基地・部隊が攻撃対象となることも、日本の都市が攻撃対象となることも考えられる。多数の各種想定がほぼ同時に攻撃される可能性も否定できない。米国からの報復核兵器攻撃の可能性が抑止力となって核兵器攻撃を受けるないという議論があるが、一方で、米本土が核兵器攻撃を受ける可能性を回避するために、米国が報復攻撃を実行しないという計算が働く可能性も否定できない。

この想定の場合、日本が1で述べた「核兵器依存国」であるということが大きな意味を持つであろう。「公然たる核保有国」は、「NPTに参加している非核保有国には核兵器攻撃をしない」という非核国家の安全保証を安保理声明で約束しているが、中国以外の国は、核兵器国と同盟関係にある国は対象から外す趣旨の条件を付与している[26]。したがって、米同盟下の日本は、「安全の保証」の対象とはならないのである。「NPT非加盟の核保有国」、核保有主張国も、同じ考え方をとると予想しなければならない。

また、4で説明したような状況下で日本が誤判断・事故などの偶発的核兵器攻撃の対象になるシナリオも否定できない。

(2) 非国家主体による攻撃

日本を対象にした非国家主体による攻撃の可能性について、可能性はゼロであると誰しも断言はできないであろう。理論的な想定としては、米国が主導する対テロ戦争への日本への協力を根拠とした攻撃、日本が主導する政策への敵意の蓄積としての攻撃などが考えられる。しかし、5で説明したように、現段階においては、日本の都市が非国家主体による核兵器攻撃を想定して対策を立てても、それを防止するために努力することが理にかなった対策であろう。
第3章 核兵器による被害発生のメカニズム

1 核兵器とは
核兵器とは、爆発エネルギーとして原子核分裂反応や原子核融合反応によって放出される核エネルギーを用いる兵器の総称である。

ウラン235やプルトニウム239の原子核分裂反応を利用すると、原爆弾（原爆）と呼ばれ、昭和20年（1945年）8月6日に広島に投下された原爆は核素としてウラン235を、同年9月2日に長崎に投下された原爆は核素としてプルトニウム239を用いたものである。広島・長崎への原爆投下は先立って同年7月16日に米国・ニューメキシコ州のアルバモードで行われた人類最初の核実験で用いられた原爆は、長崎原爆と同じプルトニウム239を用いたものである。広島原爆の威力は16キロトン、長崎原爆の威力は21キロトンであった。

近年問題となっている「劣化ウラン弾」とは、ウラン238を主成分とする劣化ウランを弾芯の材料として用いた爆弾であるが、爆発には通常火薬が用いられており、核兵器には分類されない。

これに対して、ウラン235やプルトニウム239の核分裂反応による高温・高圧で水素の核融合反応を起こさせ、巨大な爆発エネルギーを発生させるタイプの核兵器は「水素爆弾」（水爆）と呼ばれる。水素は「重水素化リチウム」の形で仕込まれており、核分裂反応によって放出された中性子がリチウムと反応して3重水素を生み出し、これが重水素と核融合反応を起こしてエネルギーを発生する。

昭和29年（1954年）3月1日に米国が中部太平洋のビキニ環礁で実施した水爆実験は、水素の核融合反応で発生する中性子でさらにウランの核分裂を誘発するタイプの水爆で、核分裂（fission）−核融合（fusion）−核分裂（fission）の英語の頭文字をとってFF−F−F爆弾とか3F爆弾と呼ばれる。この水爆の威力は約15メガトンであり、広島原爆の約940倍に相当した。昭和14年（1939年）～昭和20年（1945年）の第二次世界大戦で用いられたすべての砲弾の威力の合計は、広島・長崎原爆を含めて約3メガトンだったので、ビキニ水爆は1発で第二次世界大戦5回分に相当した。また、旧ソ連が昭和36年（1961年）10月31日にソヴァヤゼムリャ島上空約4,000mで爆発させた水爆は約58メガトンの威力（広島原爆の約

13 劣化ウランとは、天然ウランを濃縮する過程で生じるウラン238を主成分とする放射性廃棄物で、非常に硬くて重いウランの性質を戦車の装甲を貫通する砲弾に利用したものが劣化ウラン弾である。貫通時に飛散する劣化ウランの細かい粒子は、体内に取り込まれることにより人体に影響を及ぼし、また環境汚染を引き起こす。

14 原子核を構成する粒子で、ウラン235やプルトニウム239の核分裂反応などから発生する。中性子の流れである中性子線は、空気中を長距離にわたって飛び、容易に人体の奥にまで浸透する。このため体外からの放射線被曝において大きな脅威となる。
第3章 核兵器による被害発生のメカニズム

3,600倍、第二次世界大戦終戦约19回分）だったが、これはこれまでに行われた最大規模の核爆発実験であった。

中性子爆弾は特殊な水爆で、爆風や熱線の割合を極小化し、中性子線やガンマ線の放出量を極大化した「放射線強化兵器（Radiation Enhanced Weapon,REW）」である。中性子爆弾の威力（爆風や熱線）は広島・長崎原爆の10分の1程度とされ、放出される大量の放射線によって敵兵の脳神経を麻痺させ、任務遂行不能に陥らせることを主目的とするものである。

さらに、米国では地下深い軍事中核を破壊するための核バンカーバスターなど、用途別の特殊な新型核兵器の開発の検討の可能性が残されている。

また、核兵器は、それを敵の目標まで送り届けるためのミサイルや爆撃機などの「運搬手段」と一体になったものである。ミサイルには弾道ミサイルと巡航ミサイルがあるが、それらは地上から発射されるだけでなく、航空機や潜水艦からも発射される。広島・長崎原爆はテニアン島から発射したB29戦略爆撃機によって約9,600メートル上空から投下されたものである。

さらに、核兵器の実戦使用に際しては戦況を把握し、目標を定め、核弾頭を確実に送り届けるための「指揮・管制・通信及び諜報システム」（Command, Control, Communication and Intelligence System、略して C3Iシステム）が必要とされる。

核兵器は、昭和17年（1942年）に米国で発足した「マンハッタン計画」と呼ばれる原爆製造計画で開発され、昭和20年（1945年）に実戦使用された。核兵器保有国は1940年代には米国とソ連（現ロシア）、1950年代にイギリス、1960年代にフランスと中国、1970年代にインド、1990年代にパキスタン、2000年代に北朝鮮と、増加の一途をたどっている。イスラエルも1960年代に開発に着手し、すでに1967年の第3次中東戦争時に最初の実戦配備が行われたと報じられている。その背景には、核兵器による威嚇によって戦争を防ごうとする「核抑止政策」や、核兵器を外交の手段として利用する危険な政策があるが、実際には核兵器はその開発以来一貫して存在し続けているにもかかわらず、戦争は一向に抑止できないばかりか、核兵器の生産や核実験に伴う被害、核事故の危険性、核兵器の垂直拡散や水平拡散、さらには、国家あるいはテロリスト集団による核兵器使用の危機の増大など、核兵器の存在は人類の文明に対する持続的な脅威であり続けている。

15 原子核に余分なエネルギーがあると、原子核はそのエネルギーを電磁波として放出する。これをガンマ線と呼ぶ。ガンマ線は、空気中を長距離にわたって飛び、容易に人体の奥にまで浸透する。このため体外からの放射線被曝において大きな脅威となる。
2 放射線による被害

(1) 核爆発と放射線被曝

原爆の場合、全核爆発エネルギーの約15％が放射線として放出されるが、その内訳は5％が初期放射線、10％が残留放射線と考えられる。

核兵器の起爆（核分裂反応が始まるときをいう。以下同じ。）後、可視的な現象が起こる前に、ウラン235やプルトニウム239の原子核分裂反応に伴う中性子線やガンマ線などの電離放射線が放出される。初期放射線のほとんどは、この間に放出されるため、この時点で致死線量の放射線を浴びた人々は、閃光や爆風、熱線が襲ってくる前に死すべき運命を決定づけられるのである。水爆の場合には、この核分裂反応によって放出された放射線のエネルギーを利用して水素原子の仲間である重水素や3重水素の原子核融合反応を起こすが、この場合にも大量の中性子線やガンマ線などの電離放射線が放出される。これらの放射線には、核反応で放出された中性子線が爆弾を構成している鉄の原子核と反応して発生するガンマ線や、ウラン235やプルトニウム239の原子核分裂反応で生成された多様な核分裂生成物が放出するガンマ線も含まれる。このような過程で起爆後およそ1分以内に放出される放射線は、「初期放射線」と呼ばれる。

これらの放射線は大気によって吸収され減弱しながら地上に達するが、その途中、放射線のエネルギーを吸収した大気が超温状態に加熱され、その温度に応じた波長の電磁波を放出する。初期の超高温状態ではエックス線が放出されるが、温度の低下に伴って紫外線、可視光線、赤外線など徐々に波長の長い電磁波が放出される。可視光線を放出する温度領域の大気は「火球」として観察される。また、核爆発によるガンマ線が大気中の酸素原子や窒素原子から電子を放出させ、電磁誘導によって強烈な電磁波（電磁パルス）を発生させるが、これについては別項（5－1）で検討する。

爆発中心から放出された中性子線やガンマ線は距離に応じた減弱を受けながら地表に達し、人間や建物や地面を照射する。人間に浴びせられる中性子線やガンマ線の量は、DS02（2002年線量システム）という計算方式によって評価される。

16 物質を通過中に、その物質を構成する原子の軌道電子をその軌道から引き離す（電離する）能力を有する放射線を電離放射線という。本章で取り上げるアルファ線、ベータ線、ガンマ線及び中性子線はいずれも電離放射線である。電離によって原子から引き離された電子や電子を失った原子が直接又は間接にDNAを傷つけることによって人体に種々の障害が起きる。

17 財団法人放射線影響研究所が用いている広島・長崎の原爆被爆者の被爆線量を推定する方式で平成15年（2003年）3月15日に承認された。従来用いられてきた方式（DS86）を見直した結果、広島原爆については、威力が15キロトンから16キロトンに、爆発高度が580mから600mに変更された。
第3章 核兵器による被害発生のメカニズム

建物や地面に浴びせられた中性子線は、それらに含まれる 23Na（ナトリウム23）、31P（リン31）、59Co（コパルト59）、151Eu（ユーロビウム151）などの原子核と放射化反応を起こし、それらを 24Na（ナトリウム24、半減期：15時間）、32P（リン32、半減期：14日）、60Co（コパルト60、半減期：5,277年）、152Eu（ユーロビウム152、半減期：13年）などの放射性核種に変える、いわゆる「残留放射能」を生成する。これらの放射性核種は、中性子線が降り注ぐ量に応じて生成される。建物や土の中に生成されたこれらの放射性物質はベータ線18やガンマ線を放出するため、核爆発時には当該区域内初期放射線を浴びなかった場合でも、後刻爆心近傍に立ち入った人の被曝原因になる。

さらに、核分裂反応によって生成された多種多様な核分裂生成物は、いったんはいわゆる「キノコ雲」とともに巻き上げられて運ばれるが、その一部はやがて周辺地域に放射性降下物（フォールアウト）として降り注ぎ、これを「残留放射能」となる。時には、核兵器爆発後に発生した火災によるスズや亜鉛などを含む重油のような粘着性の雨（いわゆる「黑い雨」）に含まれて降下することもあるが、その範囲や程度を正確に予測することは可能ではない。放射性降下物の中には、原子核分裂反応を起こさなかったウラン235やプルトニウム239の一部も含まれる可能性がある。なお、ウラン235やプルトニウム239はアルファ線を放出する核種であるが、アルファ線19は空気中でも3〜3.5cmしか透明できないため体の外から被曝する危険はなく、呼吸や飲食を通じて体内に取り込んだ場合に検討の対象になる。

したがって、核兵器爆発による放射線被曝は、①核兵器の起爆後1分程度以内に放出される中性子線やガンマ線などの初期放射線、②中性子線によって土や建物中に生成される放射性核種から放出される残留放射線、③降下した核分裂生成物から放出される残留放射線、④未分裂の核物質（ウラン235、プルトニウム239）の降下に由来する残留放射線の4つに起因すると考えられるが、①は体の外部からの被曝（外部被曝）、②③④は外部被曝及び体内への摂取に伴う体内部からの被曝（内部被曝）、④は内部被曝がそれぞれ問題となる。

18 ある種の放射性の原子核は、崩壊の際に電子を放出する。この時放出される電子をベータ粒子という。その流れをベータ線という。ベータ線は人体内では数mmしか飛べないが、空気中では数m飛び、ベータ線を放出する核種が体内に取り込まれた場合に大きな脅威となる他、体外であっても近くにあれば放出した皮膚に障害を起こし得る。
19 ウランのような重い放射性の原子核が崩壊する際、ヘリウムの原子核が放出される。これをアルファ粒子と呼び、その流れをアルファ線と呼ぶ。アルファ線は空気中でも2〜3cm、人体内ではその1000分の1程度しか飛べず、紙などでも遮蔽できる。そのため、アルファ線を放出する核種が人体の外部にある場合の脅威は小さいが、体内に取り込まれた場合の脅威は大きい。
人体に受けた放射線線量を推定するには、主に4つの方法がある。

| 表3－1 放射線被曝線量を推定するための方法 |
|-----------------|-----------------|-----------------|
| **方 法** | **説 明** |
| 急性放射線症状 | 急性期に、吐き気や嘔吐などが出現してくる時間と被曝した線量はよく相関するので、被曝線量を大まかに判定するのに参考となる。（表3－3参照） |
| から推定する方法 | から推定する方法 |
| 経時的なリンパ球 | リンパ球は放射線に最も敏感であり、被曝した線量に伴って減少を示す。すなわち0.5～1.0Svの被曝で25％程度減少、1.0～3.0Svで50～90％の減少、3.0～10Svで顕著な減少を示す。（表3－3参照） |
| 数の変化から推定する方法 | 物理学的手法により体内放射線（放射能）を推定する方法主に2つの方法がある。一つは体外測定法で、体内に摂取された放射性物質がガンマ線を放出する場合（60Co、137Cs、131I、54Mnなど）、体外から特殊装置を用いて測定する（全身の場合、ホールボディカウンター、甲状腺の場合、甲状腺モニター装置）。これに対し、アルファ線あるいはベータ線を放出する核種（3H、90Sr、235U、239Puなど）の検出には、血液、尿、唾液などに化学処理を施して試料とするバイオアッセイ法と呼ばれる方法が用いられる。 |
| 末梢血リンパ球の | リンパ球には数年から十数年に1回分裂する細胞群がある。このように休眠期にいるリンパ球を特殊な刺激剤で目覚めさせてその染色体を見ると、当時受けた放射線の傷が露呈することになり、その傷の数（染色体異常数）を数えると、当時の被曝線量を推定することができる。この方法は以上4つの判定方法の中で最も敏感な方法である。 |
| 染色体異常により | 推定する方法 |

なお、核分裂生成物や未分裂の核物質を吸引・摂取した場合の体内被曝については、放射性核種（例えばウランやコバルトなど）の種類とその体内挙動（吸収率、臓器への移行、複数臓器への分布、臓器内滞留時間、代謝された形での生物学的半減期など）により複雑な様相を呈する。

例えば、54Mn（マンガン54）の場合、侵入経路として吸入及び嚢下により体内に入ると、消化管から吸収されるのは、そのわずか10％である。滞留する臓器は肝臓、脾臓、肺で、物理学的半減期は314日であるが、代謝された形での生物学的半減期は25日である。54Mn（マンガン54）は詳しく研究された核種の一つで、大半の放射性核種の体内挙動については明らかにされていない。このため核爆
第3章 核兵器による被害発生のメカニズム

発に伴って発生する数多くの放射性物質についての内部被曝線量推定は非常に難しい。
62年前、広島市に原爆が投下された翌日早朝から1週間、西練兵場付近で作業を行った賀茂部隊の体内被曝線量は、調査の結果約0.1Gyと推定されている。

(2) 急性放射線症
放射線が人体に照射されると、細胞内で電離が引き起こされ、これにより細胞核内にある遺伝子が傷つけられて、人体に様々な障害が引き起こされるが、その程度や様相は、種々の要因により異なる。

表3-2 放射線の人体影響に変化を及ぼす要因

<table>
<thead>
<tr>
<th>要因</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>被曝線量</td>
<td>線量が多ければ多いほど障害も大きい。</td>
</tr>
<tr>
<td>被曝範囲</td>
<td>身体の一部または広範囲の方が影響は大きい。</td>
</tr>
<tr>
<td>被曝部位</td>
<td>同じ被曝でも四肢よりも重要な臓器のある臓幹部の方が影響は大きい。</td>
</tr>
<tr>
<td>線量率</td>
<td>単位時間内に受ける線量が多ければ、少ない場合よりも影響は大きい。</td>
</tr>
<tr>
<td>被曝様式</td>
<td>内部被曝の場合は放射性物質が沈着した組織に、体外からの全身被曝の場合には体の様々な部位に影響が出る。</td>
</tr>
<tr>
<td>放射線の種類</td>
<td>種類によって人体に及ぼす影響の程度が異なる。</td>
</tr>
<tr>
<td>被曝時年齢</td>
<td>同じ線量では細胞分裂が活発な若年者ほど影響が強く出る。</td>
</tr>
<tr>
<td>被曝後の時間</td>
<td>被曝早期には急性放射線症を、また長期間後にはがんや血管障害などを発症する。</td>
</tr>
</tbody>
</table>

放射線がもたらす障害は、遅くとも被曝後数か月以内に現れる急性放射線症（急性障害）と、長期間の潜伏期間を経て現れる後障害（後発障害）に分けられる。
このうち、急性放射線症は、遺伝子の損傷がもたらす細胞死により起こり、線量が大きくなればなるほど症状は重くなる。細胞死は、細胞分裂が盛んに起こっている造血組織や消化管、生殖腺、皮膚などの組織・臓器で起こりやすく、例えば、造血組織で細胞分裂の元となる幹細胞の死が起こると、各種の血液細胞が減少し、その程度が重い場合、感染症や出血で人死に至る。このため、これらの患者には、感染症対策や骨髄移植などの治療が行われる。
2 放射線による被害

比較的短時間に大量の放射線に被曝した場合の放射線量と急性放射線症との関係を表3-3及び表3-4に示す。被曝後早期に専門的な治療を十分に受けることができれば、表3-4に示す半致死線量(4Sv)でも、半数を超える被曝者が助かる見込みはあるが、核兵器攻撃がもたらす大量の被曝者すべてに十分な治療を施すことは事実上困難だろう。

表3-3 被曝線量と急性放射線症（出典:参考文献[27]）

<table>
<thead>
<tr>
<th>線量 Sv</th>
<th>0-0.5</th>
<th>0.5-1.0</th>
<th>1.0-2.0</th>
<th>2.0-6.0</th>
<th>6.0-10</th>
<th>10-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>全身症状</td>
<td>合計</td>
<td>体中の物質を排出する</td>
<td>脱毛</td>
<td>出血</td>
<td>下痢</td>
<td>発熱</td>
</tr>
<tr>
<td>後日出現する</td>
<td>身体的症候</td>
<td>体重減少</td>
<td>体の一部を消失する</td>
<td>体の一部を消失する</td>
<td>体の一部を消失する</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吐き気・嘔吐の</td>
<td>発現までの時間</td>
<td>3時間</td>
<td>30分</td>
<td>1時間</td>
<td>1時間</td>
<td>30分</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>血液異常</td>
<td></td>
<td>輕度減少</td>
<td>50%減少</td>
<td>顕著な減少</td>
<td>500/μl以下</td>
<td>0</td>
</tr>
</tbody>
</table>

※1μl = 1,000,000 μl（マイクロリットル）

表3-4 放射線の1回照射量と身体影響（長崎大学大学院医歯薬学総合研究科原爆後障害医療研究施設国際放射線保健部門のホームページから）

<table>
<thead>
<tr>
<th>線量 Sv</th>
<th>身体症状</th>
</tr>
</thead>
<tbody>
<tr>
<td>250mSv以下</td>
<td>身体症状なし</td>
</tr>
<tr>
<td>500mSv</td>
<td>白血球一時減少</td>
</tr>
<tr>
<td>1,000mSv</td>
<td>吐き気、おう吐</td>
</tr>
<tr>
<td>1,500mSv</td>
<td>50%の人に放射性宿醉（二日酔いのような状態）</td>
</tr>
<tr>
<td>2,000mSv</td>
<td>5%の人が死亡</td>
</tr>
<tr>
<td>4,000mSv</td>
<td>30日間で50%の人が死亡（半致死線量）</td>
</tr>
<tr>
<td>7,000mSv</td>
<td>100%の人が死亡</td>
</tr>
</tbody>
</table>

(3) 後障害

傷つけられた遺伝子による細胞の突然変異は、例えば20年後、また50年後にそれぞれの臓器に対応した潜伏期を経て、多くの被曝者の様々な健康障害＝後障害＝の誘因となる。すなわち、被曝数年後には放射線内障が、また、幼少時被曝の場合には成長・発育の遅延が出現することがあり、生涯固定される。母親の胎内で被曝した場合には知的障害を伴う小頭症児が生まれてくることがある。カルシウム代謝異常を示す副甲状腺機能亢進症や甲狀腺機能低下症も数十年
第3章 核兵器による被害発生のメカニズム

を経て発生することがある。かなりの量の放射線に被曝した場合には壮年期になると脳や心臓血管障害（脳梗塞、心筋梗塞など）が起こり得る。放射線による障害で最も致命的なものはがんの発生である。がんはそれぞれの臓器に対応した潜在期を経て発生する。白血病は5年後より、甲状腺がんは10年後、乳がん、肺がんは20年後、胃がん、結腸がんは30年後、皮膚がん、膵膜腫（脳腫瘍のひとつ）は40年後に高い頻度で発生する。これらのがんにとどまらず、様々なのがんが発生することが報告されている[28]。さらに60歳を過ぎると、2つ目のがんや3つ目のがんが発生することがある。放射線によるがん発生の特徴は①被曝線量が多いほどがんになりやすい、②被曝時年齢が若いほどがんになりやすい、③被曝者ががんの好発年齢に達した時に発生する、などである。すなわち、放射線被曝は、人生の後半になって、遺伝子異常に基づく様々な予期せぬ病気に遭遇するという大変不幸な結末をもたらすのである。

3 爆風による被害

核爆発によって発生するエネルギーのうち、約50%は衝撃波と爆風のエネルギーとして放出される。

核反応によって形成された高温の火球は音速を超える速さで膨張するため、その先端で衝撃波が発生する。衝撃波の強さは核弾頭の威力や爆発高度などによって異なるが、核爆発の直後に形成される火球とともに成長し、やがて火球の表面を離脱して同心球状に伝播して行く。衝撃波は圧力波（圧縮波）で、それが到達した場所にあるあらゆるものを押しつぶす（急激な圧力上昇：過圧）ように作用する。

核爆発が空中で起こった場合には、衝撃波が地表面に達すると反射衝撃波が発生し、ともとの衝撃波と相互作用を起こして破壊力倍増させる現象が起こる（マッハ効果）。広島原爆の場合、地上600mで爆発した場合が最も衝撃波の破壊力が大きくなるとされた[29]。地下の軍事施設などを破壊する目的で核兵器攻撃を行う場合には、地表面（核バンカーバスターの場合には地中）で爆発させて強力な衝撃波を発生させ、それを地中で伝播させて破壊する。

衝撃波に続いて、火球の急速な膨張に伴って押し出される空気の流れが爆風となって吹き荒れ、周囲の建物を破壊し、人間を殺傷する。爆風は空気の運動によって生じる圧力（動圧）によって、その進路に存在するものを吹き払う。

爆心直下では火球の急上昇に伴って強い上昇気流が発生して気圧の急激な低下が起こるため、やがて大量の空気が周囲から爆心に向かって吹き返す現象が起こる。核実験の記録フィルムでも、爆発直後、建物がいったん外側に押し出されるような動きを見せた後、逆に爆心方向に引き寄せられるような振る舞いを見せる現象は、この「吹き戻し」に起因する。
4 熱線による被害

爆風が人体に及ぼす影響には、肺の損傷や鼓膜の破裂、内臓や眼球の脱出[30]などの直接的影響と、爆風により体が吹き飛ばされて地面や建物等に衝突したり、建物の崩壊に巻き込まれたり、あるいは爆風により飛散した物体が人体に衝突したりすることによって生じる間接的影響がある。

表3－5 急上昇し長時間継続する圧力パルスが人体に与える直接の影響に関する試験的な基準（出典：参考文献[31]）

<table>
<thead>
<tr>
<th>影響</th>
<th>有効最大過圧（単位 psi）</th>
</tr>
</thead>
<tbody>
<tr>
<td>肺の損傷:</td>
<td></td>
</tr>
<tr>
<td>しきい値</td>
<td>12（8－15）</td>
</tr>
<tr>
<td>重度</td>
<td>25（20－30）</td>
</tr>
<tr>
<td>致死:</td>
<td></td>
</tr>
<tr>
<td>しきい値</td>
<td>40（30－50）</td>
</tr>
<tr>
<td>50%</td>
<td>62（50－75）</td>
</tr>
<tr>
<td>100%</td>
<td>92（75－115）</td>
</tr>
<tr>
<td>鼓膜の破裂:</td>
<td></td>
</tr>
<tr>
<td>しきい値</td>
<td>5</td>
</tr>
<tr>
<td>50%</td>
<td>15－20（20歳以上） 30－35（20歳未満）</td>
</tr>
</tbody>
</table>

※肺の損傷と致死については、動物のデータを人間に外挿したもので、かっこ内の数値は、結果のばらつきを示している。また、鼓膜の破裂は、人間と動物の比較的限定されたデータに基づくものである。

参考文献[31]に示されている表3－5のように、一般に人体は直接的影響だけであれば、かなりのレベルに耐えることができる。このため間接的影響が主たる死傷要因となる。例えば、鼓膜の破裂のしきい値20である5psi（34.5kPa）の過圧で木造住宅は倒壊すると考えられているように、間接的影響は、直接的影響に比べるとかに低い過圧で生じる。ただし、実際にどの程度の人が死傷するかは、爆風の強さだけでなく場所や周辺環境にも依存するため一様ではない。

4 熱線による被害

核爆発によって発生するエネルギーの約35％が熱線として放出される。

核爆発によって発生する数百万度に達する超高温の火球内部では、すべてのものが蒸発する。火球は急速に膨張し、核兵器の威力によって決まる最大半径に達する。広島原爆規模の威力の核兵器の場合、火球はおよそ1秒で半径約140mに

20 影響が現れる境界値のこと。
第3章 核兵器による被害発生のメカニズム

膨張する。既に2で述べたように、火球は膨張するにしたがって徐々に温度を低下させつつ様々な波長の電磁波を発生させ、その過程で極めて強力な可視光線（光）と赤外線（熱線）を放出する。しばしば「ビカ」と呼ばれる強烈な光が、それを直視した広範囲の人間に视力障害を起こし、熱線は爆心近くに急激な温度上昇を引き起こして人間に第1度〜第4度の熱傷を生じさせ、あらゆる可燃物を燃焼させ火災を発生させる。場合によっては、大規模な火災の高熱によって上昇気流が発生して局地的な気圧の低下を招き、周囲の大気が強風となって流れ込むことにより、熱線及び爆風による建物被害から発生した多数の火災が一つに合流した「火事-domain」（Fire storm）が発生し、その内部を焼き尽くす21。熱線がもたらす熱傷には、熱線の直接作用による第1次皮膚熱傷と衣服ないしは家屋火災に伴う第2次皮膚熱傷があり、これらの熱傷の重傷度は、熱傷面積と熱傷の深さにより判断される。

このうち、熱傷の深さは、第1次皮膚熱傷の場合、熱エネルギーの強さに応じて第1度（皮膚が赤くなる紅斑、1キロトンの核兵器22では2.0cal/cm²（0.08MJ/m²）、第2度（水泡形成、1キロトンの核兵器では4.0cal/cm²（0.17MJ/m²）、第3度（潰瘍や壊死、1キロトンの核兵器では6.2cal/cm²（0.26MJ/m²）、第4度（炭化）の4度に分類される。

また、熱傷面積の推定には、一般に大人の場合「9の法則」— 全身皮膚面積を頭部、右上肢、左上肢、右下肢前面、左下肢前面、左下肢後面、腹部、上背部、下背部を各9％、手掌1％の計100％とみなす—が用いられる。II度以上の熱傷が体表面積の20％を超える場合は致命的傷害といえ、III度の熱傷が体表面積15％以上では、壊死組織から遊離される物質による全身毛細血管透過性の亢進により、熱傷ショック23の出現が予想される。

5 電磁パルスその他による被害

(1) 電磁パルスの影響

核兵器が爆発すると、発生したガンマ線と大気との相互作用に伴って大量の電子が放出され、瞬間的に極めて強力な電磁波（電磁パルス）が発生する。この電磁パルスは電磁誘導作用によって広範囲の電子機器に過大な電流を生じさせて使用不能に陥れ、結果として、通信・管制業務に重大な支障を生じる可能性が

21 第二次世界大戦時のハプブルグ空襲で発生した火事-domainでは、直径1mの木を根こそぎ倒すほどの強風が発生した[32]。
22 同一熱傷を起させのように必要な熱量は核兵器の威力によって異なる。本報告で用いた値は付録C表C-4参照。
23 血管透過性の亢進に伴い、大量の血漿が血管外に漏出することで臓器血流が低下し、臓器障害が進行する。
あることがつとに指摘されている。
例えば、米国の中核位置するオマハ上空500kmで核爆が爆発した場合、
国中の送信機器、送電システム、コンピュータ、レーダーなどが、落雷の100万倍
とも言われるテラグラム電圧平均値に直撃されて機能不全に陥り、その結果、救援活
動に必要な情報の収集や伝達が困難に直面すると考えられている。最近の電子
機器はシリコン・チップの寸法と動作電圧の極小化が目指されており、急激な電
圧上昇に対して一層脆弱になっていることも指摘されている。米国防総省の諮問
委員会である国防科学委員会は、平成16年（2004年）、『将来の戦略的攻撃戦
力』[33]の中で、今後「核電磁パルス強化兵器」を保有すべきことを提言している。
また、米国政府の「電磁パルス（EMP）攻撃調査委員会」は、平成16年
（2004年）7月22日、「北朝鮮が核兵器を用いて電子システムを無力化する電磁
パルス（EMP）兵器を開発するおそれがある」との報告書[34]を下院軍事委員会
に提出している。日本においても、防衛省技術研究本部において「電磁パルス防
護に関する研究」がなされてきたところである。
したがって、核兵器攻撃を想定する場合、熱線・爆風・放射線などによる被害と
とともに、電磁パルスによる影響を考慮することが必要であるが、核電磁パルスによ
る被害を正確に評価することが可能でない現状に鑑み、核兵器攻撃時には、熱
線・爆風・放射線の被害に加えて、被災後の情報収集や救援情報の伝達の面で
本質的な困難に直面することを十分に認識する必要がある。すなわち、被害地域
では電子機器に依存する情報収集や救援活動は期待できないことを認識するこ
とである。とりわけ、現代社会では、救急活動において医療用電子機器システム
が果たす役割が大きいことは十分に認識される必要がある。

(2) 流言飛語の影響
混乱した状況の下では、信頼すべき情報の欠如が原因となって根拠のない噂
が伝播し、人々を一層危険な集団行動に駆り立てるような事態が発生し得る。
災害に関する近年の例では、平成17年（2005年）3月20日に発生した福岡
県西方沖地震では、最大余震があった同4月20日以降、人つて、あるいは携帯
電話のメール等で近く大きな地震が起きるという噂が福岡県内を中心に飛び交い、
気象台が根拠のないデマに惑わされないよう注意を呼びかける事態にまで発展し
[35]、また、和歌山県では、同年11月3日に大規模な地震が発生するとのうわ
さが広まり、防災用品の売り上げが急増えたという[36]。
社会心理学の研究によると、流言飛語は、情報の「重要性×不確実性」が大き
いほど発生し易いとされている。核兵器攻撃による被災は生死に関わる重大事で
あり、「情報の重要性」はこの上なく大きいかでなく、核兵器攻撃後の大混乱の
第3章 核兵器による被害発生のメカニズム

下では前節に述べた電磁パルスによる電子情報手段の麻痺の影響も重なり、
「情報の不確実性」も著しく化している。したがって、核兵器攻撃後の地域社会は
流言飛語が最も発生しやすい条件を備えていると言うべきであり、被害は人々が
理性的に行うと想定した場合以上に拡大する恐れがあることを覚悟しなければ
ならない。

(3) 精神的影響

人間は突然の、しかも莫大な規模の爆発に遭遇し、地獄絵を見るようなさま
じい光景に直面すると、ある者は呆然として身動きせず、ある者はただただ走り回
るなど興奮状態に陥り、またある者は過去のすべての記憶を失い、自らを失って
さまよい歩くなどの精神的異常を呈するようになる。また、広島・長崎の原爆被爆
者には多数の自殺者が出た。その理由としては、家族を失っての孤独感、被爆
者への偏見などの社会的重圧、当時助けを求めてきた人を助けられなかった後
悔・罪悪感、重い病気への不安感、そして将来起こってくるであろう数々の不幸
に、生きる力を失ってしまったことなどが考えられる。さらに、急性期の精神症状
が治まってしまっても、数年後あるいは数十年後において、大きな音や光を受けると当時
の記憶を容易に思い出し、息苦しくなったり、どきどきするなどの（フラッシュパッ
ク）状態が続き、限りない不安感やそのような刺激からの逃避、拒否感などを持ち
続ける人も少なくない[37,38]。このように核兵器攻撃は、生涯を通して回復困難
な心的外傷後ストレス障害をもたらすことがある。

(4) 地域社会及び被爆者に対する社会的影響

核兵器攻撃によって、道路・鉄道・上下水道・橋梁・通信情報施設・学校・病
院・公営住宅などを含む社会的な経済基盤や生産基盤が根こそぎ破壊されるだ
けでなく、行政機能が抱えて立つ様々な情報もほとんど完全に失われるため、地域
社会の再建は想像を絶する困難に直面する。

また、核兵器攻撃は被災地域の自然災害に対する脆弱性を増大させる。昭和
20年（1945年）9月17日～18日、枕崎台風が原爆被災直後の広島を襲い、洪水
や山崩れによって広島県を中心に約2,000人の死者・行方不明者を出した。
かろうじて残っていた橋の流失や、復旧しかけた鉄道・道路・社屋などの浸水に
よって復興の努力は文字どおり水泡に帰し、被災者たちは所持品を流失し、浸水
した防空壕や仮設住宅を追われた。県外から帰郷しようとした人々も、再び避難
しなければならなかった。このように、核兵器攻撃によって破壊された被災地は、
自然災害への脆弱性という困難を抱え込むことを忘れてはならない。

さらに、核兵器攻撃による被爆者は放射線・爆風・熱線による身体的影響を受
5 電磁パルスその他による被害

けるだけでなく、遺伝的影響の不安に苛まれ、社会的差別や偏見にさらされ、いわゆる「原爆ぶらぶら病」と呼ばれる不定愁訴に見舞われて生活や就業の上でも様々な困難に直面することは、広島・長崎の被爆者たちの深刻な体験で示されたとおりである。被爆から62年を経た今日なお、多くの被爆者が原爆症認定を巡って訴訟を提起しているように、核兵器攻撃は何十年もの間、被爆者たちに身体的・精神的・社会的困難をもたらすことになる。

24 体調不良を訴えるものの、検査しても原因がはっきりしない状態を指す。
第4章 核兵器攻撃による被害想定

昭和20年（1945年）8月6日午前8時15分。広島の上空に飛来してきた米軍の爆撃機が原子爆弾を投下し、急旋回して去った。被爆証言者の話によると、突然闪光が走り、爆心地から2km以内にいた市民のほとんどは失神していた。気がついた時には、あたりが真っ暗で、やがて視界が開けたとき見たのは、建物の下敷きになり、永遠の眠りについた人、動けなくなったり助けを求められる人、火傷を負い皮膚が剥がれた人、ガラスその他で怪我をした人、爆風で飛ばされた人など周囲の環境は全く変わっていた。爆発の音や、爆風を感じた人はほとんどいない。ただ2km以遠の人たちは、閃光を感じた後、目を覆い、指で耳栓をしたが何の効果もなかったという。何が起きたかわからなかったまま、とにかくそこから逃れることだけを考えた。逃げる方向もわからず、とにかく前を歩く人について行ったという話もほとんどである。

内面に広がっている死体は避難途中で力尽きて亡くなった人達である。救助隊も郊外に向かう避難者の多くは中心部まで入れない状態になり、自力で市の中心部から離れ、安全な場で逃れたのみで救助隊に助けられた。避難途中で黒い雨をかぶったという記録もある。

この時起きたことを時系列で以下に示す。

<table>
<thead>
<tr>
<th>経過時間</th>
<th>現象</th>
</tr>
</thead>
<tbody>
<tr>
<td>0秒</td>
<td>高度9,600mで投下された原爆が、43秒後に高度600mで爆発。</td>
</tr>
<tr>
<td>1/1,000,000秒</td>
<td>核分裂が終了。この間に中性子とガンマ線を放出。爆弾の内部が100万℃以上、数十万気圧となり爆発。</td>
</tr>
<tr>
<td>1/10,000秒</td>
<td>半径約14m、温度30万℃の火球を形成。</td>
</tr>
<tr>
<td>1.5/100秒</td>
<td>火球の半径は約90m、見かけ上表面温度は1,700℃まで低下し、その後上昇。</td>
</tr>
<tr>
<td>0.3秒</td>
<td>火球の表面温度は7,000℃まで上昇。</td>
</tr>
<tr>
<td>1秒</td>
<td>火球の半径は約140mで最大化、表面温度は約5,000℃まで低下。</td>
</tr>
<tr>
<td>3秒</td>
<td>火球はその大半のエネルギーを出し尽くす。</td>
</tr>
<tr>
<td>約10秒</td>
<td>都市壊滅。火災が発生。</td>
</tr>
<tr>
<td>3分後</td>
<td>人々はキノコ雲を見る。</td>
</tr>
<tr>
<td>20分後</td>
<td>火災の塵と放射能を含む黒い雨がところにより降り始める。</td>
</tr>
</tbody>
</table>

※参考文献[29,39,40]から作成。

それから62年、もしそのことが今の広島に起こったら、一体どのようなことになるのであろうか。
1 被害想定の前提条件

(1) 条件設定の内容・理由

核兵器の廃絶を願う日本国民として、核兵器攻撃を想定しなければならないことは非常に残念であるが、核兵器が存在する限り使用される可能性はゼロとは言えないだろう。では、どのような目的でどのような兵器がどのように使用されるのであろうか。単なる威圧か、あるいは軍事戦術として特定の施設を破壊するのか、それとも都市を徹底的に破壊するのか、はたまたテロを目的とするのか。攻撃を行う側は、その目的に応じて、効果が最大となるような攻撃目標や攻撃時期、用いる核兵器の威力、さらには爆発高度等を選択するだろう。ところが、攻撃を受ける側からすれば、誰がどのような目的で攻撃を行ってくるのかさえわからないのに、ましてや攻撃目標や核兵器の威力等を特定することは不可能である。

このため、ここでは62年前の状況に準拠しつつ、核兵器保有国が保有する核兵器の状況（付録B表B－1参照）等を勘案し、当時と同じ爆心地で、夏（8月）の平日の昼間（晴れ）という条件の下、以下の4つの仮想的なケースについて被害想定を行うことにした。

表4－1 想定した4つの核兵器攻撃

<table>
<thead>
<tr>
<th>形態</th>
<th>威力</th>
<th>爆発高度</th>
<th>種類</th>
<th>選択理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>空中</td>
<td>16キロトン</td>
<td>600m</td>
<td>原子爆弾</td>
<td>62年前との比較のため選択</td>
</tr>
<tr>
<td>爆発</td>
<td>1メガトン</td>
<td>2,400m</td>
<td>水素爆弾</td>
<td>最大クラスの核兵器として選択</td>
</tr>
<tr>
<td>地表</td>
<td>16キロトン</td>
<td>1m</td>
<td>原子爆弾</td>
<td>空中爆発との比較のため選択</td>
</tr>
<tr>
<td>爆発</td>
<td>1キロトン</td>
<td>1m</td>
<td>原子爆弾</td>
<td>最小クラスの核兵器として選択</td>
</tr>
</tbody>
</table>

なお、地表爆発については、主に地上からの核兵器攻撃（グリラや特殊部隊、テロなど）を、空中爆発については、主に空からの核兵器攻撃（弾道ミサイル、航空機）を想定したものである。また、1メガトンの核兵器の場合の爆発高度2,400mは、一定の破壊力の爆風が及ぶ範囲を最大化する高度である[41]。

(2) 被害想定を行う上での限界

広島及び長崎原爆の放射線については、日米合同で詳細な分析が行われており、また、放射線がもたらす人体への影響等についても、広島・長崎を中心に研究が続けられている[28,42]。しかしながら、それはあくまで広島及び長崎で現実に起こった被害についてのものであり、核兵器の威力や都市構造等が異なる場合については、あくまで、これまでに公表された「限定的・概略的」な米国の核実験データ等を用いて想定するほかに手段はなく、我々が、その信憑性を検証
第4章 核兵器攻撃による被害想定

することはできない。したがって、我々がここで披露している試算値は、かなりの幅を持ったもので、控えめに見積もったとしても、これくらいの被害が出てるだろうというものである。条件によりその被害は小さくなる場合もあるが、さらに数倍以上の被害となるかもしれないことは覚悟せざるを得ない。

なお、以下の議論で示す数値の詳細及びその仮定・前提については、付録C及びDを参照されたい。

2 4つのケースについて想定される被害

以下、被害をもたらす個々の影響ごとに、それが及ぶ範囲を大まかに示し、その上で総合的な被害についての評価を示す。

(1) 初期放射線

何れの遮蔽もしく初期放射線を浴びた場合（屋外一開放）と建物の陰（屋外一遮蔽）や屋内（木造、非木造25）において何らかの遮蔽があった場合の影響範囲を表4－2に示す。（遮蔽の考え方については付録C（91、92ページ）参照）

今日、爆心地周辺には多くの鋼コンクリートあるいは鉄骨造の建物が林立し、かつ住宅の非木造化も進んでいる。これらの建物は、62年前と同様に放射線の遮蔽に大きな効果を果たすことが見込まれる。

ただし、この計算では、初期放射線の大気中の散乱や火球の上昇による放射角度の変化等を見込んでいない。このため、単純な遮蔽計算により影響範囲とならなかった地域一特に地表爆発の場合は、初期放射線に被曝する可能性は大いにあり、被曝のリスクを考える場合には、あくまで遮蔽なしの場合の影響範囲を参考とすべきであろう。

なお、初期放射線は、核分裂反応の開始とともに放出が始まり、爆発の闪光を感じるまでの間にそのほとんどが放出される。このため闪光を感じてすぐに回避行動をとったとしても、その時までに既に放射線に被曝している。

(2) 風

参考文献[31]には、風による各種建物等の被害を大まかに予測する方法が示されている。風による被害の目安として、この方法により算出した影響範囲の主なもの等について表4－3に示す（被害の定義については表4－4参照）。

なお、この方法では、特定の爆発高度での影響範囲を算出することができないため、ここで示した範囲は、あくまで目安として解されるべきものである。

25 本書では、建物を木造建物と、鉄筋コンクリート造の堅牢な非木造建物の2種類のみとし、木造については住宅のみとしている。
表4-2 想定される初期放射線の影響範囲

<table>
<thead>
<tr>
<th>区 分</th>
<th>1キロトン</th>
<th>16キロトン</th>
<th>1メガトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%致死 7Sv以上</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋外一開放</td>
<td>1.1km</td>
<td>1.5km</td>
<td>0.9km</td>
</tr>
<tr>
<td>屋外一遮蔽</td>
<td>2.3km</td>
<td>2.6km</td>
<td>0.9km</td>
</tr>
<tr>
<td>屋内一木造</td>
<td>0.2km</td>
<td>0.8km</td>
<td>0.6km</td>
</tr>
<tr>
<td>屋内一非木造</td>
<td>0.6km</td>
<td>0.8km</td>
<td>0.2km</td>
</tr>
<tr>
<td>50%致死 4Sv以上</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋外一開放</td>
<td>1.6km</td>
<td>1.1km</td>
<td>1.3km</td>
</tr>
<tr>
<td>屋外一遮蔽</td>
<td>0.5km</td>
<td>0.9km</td>
<td>0.8km</td>
</tr>
<tr>
<td>屋内一木造</td>
<td>0.7km</td>
<td>0.9km</td>
<td>0.8km</td>
</tr>
<tr>
<td>屋内一非木造</td>
<td>0.6km</td>
<td>0.8km</td>
<td>0.2km</td>
</tr>
<tr>
<td>被曝者 0.01Sv以上</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋外一開放</td>
<td>2.2km</td>
<td>2.9km</td>
<td>2.5km</td>
</tr>
<tr>
<td>屋外一遮蔽</td>
<td>1.5km</td>
<td>1.5km</td>
<td></td>
</tr>
<tr>
<td>屋内一木造</td>
<td>2.3km</td>
<td>3.0km</td>
<td></td>
</tr>
<tr>
<td>屋内一非木造</td>
<td>1.7km</td>
<td>2.1km</td>
<td></td>
</tr>
</tbody>
</table>

※死傷基準については付録C表C-1を、数値については付録D表D-1〜D-4を参照のこと。また、表中の「－」は、付録C (91, 92ページ)に示す遮蔽条件により、火球に呑み込まれた想定した範囲では初期放射線が区分欄の線量に至らないことを示す。

表4-3 想定される爆風の影響範囲

<table>
<thead>
<tr>
<th>区 分</th>
<th>1キロトン</th>
<th>16キロトン</th>
<th>1メガトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>死傷率の設定範囲</td>
<td>1.4km</td>
<td>3.5km</td>
<td>4.5km</td>
</tr>
<tr>
<td>上記への到達時間</td>
<td>3.4秒</td>
<td>8.5秒</td>
<td>11.6秒</td>
</tr>
<tr>
<td>窓ガラスの破壊</td>
<td>2.4km</td>
<td>6.1km</td>
<td>7.2km</td>
</tr>
</tbody>
</table>

※死傷率については、爆風の過圧の値が1psi (6.9kPa)となる範囲で設定した（付録C（93ページ）及び付録D表D-11〜D-14参照）。また、窓ガラスの破壊は、爆風の過圧の値が0.5psi (3.5kPa)となる範囲とした [31]。建物の被害範囲は、参考文献 [31] 記載の方法による。
第4章 核兵器攻撃による被害想定

62年前、爆風により、広範囲にわたって木造建物が倒壊し、多くの人々が圧死、又はその後の火災により焼死した。これに対し、鉄筋コンクリート造の建物では、窓ガラスを破って侵入した爆風によって内部は減圧効果で破壊されるとともに、屋内にいた人は吹き飛ばされ、又は飛散したガラス片等が突き刺さり死傷したものの、多くの場合、倒壊による圧死等は免れた。

先にも述べたように、今日、爆心地周辺には、数多くの鉄筋コンクリート、鉄骨造の建物があり、これら堅牢な建物は、木造建物に比べ、はるかに倒壊の危険性が低いという意味で、爆風についても62年前と同様の防護効果をもたらすものと思われる。

ただし、今日の建物は、当時と比べ窓が大きく、内外壁とも軽量であり、内部には備品、商品、家財が数多くある。これらは爆風により破壊され、飛散することで、巻き込み、再発生をさらに高める要因となる。このため建物の堅牢性が、必ずしも建物の安全性の高い所につながるとは言い切れないだろう。

なお、爆風の場合、爆心地近傍以外では、閃光を感じた時にとっさに身を伏せられれば、死傷する確率を大きく減じることができるが、これには平素からの心構えと訓練が必要である。（付録D表D－11～D－14参照）

<table>
<thead>
<tr>
<th>種類</th>
<th>大破</th>
<th>中破</th>
</tr>
</thead>
<tbody>
<tr>
<td>木造建物、住宅タイプ、1階</td>
<td>骨組みが粉々になり、その結果ほぼ完全に崩壊。</td>
<td>壁の骨組みに亀裂が生じ、屋根はひどく損傷、内部の仕切り壁は吹き倒される。</td>
</tr>
<tr>
<td>又は2階建</td>
<td></td>
<td></td>
</tr>
<tr>
<td>多層階鉄骨構造オフィスビル、3～10階建、軽量の弱い壁はすぐに崩れ、耐震構造</td>
<td>骨組みがひどく歪む、初期崩壊。内部の仕切り壁は吹き倒される。</td>
<td>骨組みが中程度のゆがみ、内部の仕切り壁は吹き倒される。</td>
</tr>
<tr>
<td>多層階鉄筋コンクリート構造</td>
<td>骨組みがひどく膜が破壊、3～10階建、軽量で弱い壁はすぐに崩れ</td>
<td>骨組みが中程度のゆがみ、内部の仕切り壁は吹き倒される。</td>
</tr>
<tr>
<td></td>
<td>耐震構造</td>
<td>コンクリートがいくらか剥離。</td>
</tr>
</tbody>
</table>

(3) 閃光及び熱線

熱線を直接浴びた場合に重大な熱傷を負う範囲を表4－5に示す。

この影響範囲は幅のあるものであり、実際にはもう少し広い範囲で熱傷による
2 4つのケースについて想定される被害

被害が発生するだろう。（被害基準については付録C表C－4、熱線の値については付録D表D－11～D－14参照）

ただし、地表爆発の場合、特に屋内にいる人間にとっては、空中爆発の場合に比べて、他の建物等が遮蔽となり、危険性は大幅に減じるだろう。

表4－5 想定される熱線の影響範囲

<table>
<thead>
<tr>
<th>区分</th>
<th>1 キロトン</th>
<th>16 キロトン</th>
<th>1 メガトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱傷の深さ</td>
<td>1m</td>
<td>1.2km</td>
<td>2.2km</td>
</tr>
<tr>
<td>Ⅲ度</td>
<td>0.3km</td>
<td>1.2km</td>
<td>2.2km</td>
</tr>
<tr>
<td>Ⅱ度</td>
<td>0.4km</td>
<td>1.6km</td>
<td>2.8km</td>
</tr>
<tr>
<td>熱線の放射継続時間</td>
<td>0.5秒</td>
<td>1.9秒</td>
<td>1.4秒</td>
</tr>
</tbody>
</table>

※被害基準については付録C表C－4、熱線の値については付録D表D－11～D－14参照のこと。また、熱線の放射継続時間は、参考文献[31]記載の方法による。

熱線は、帽子や衣服等によってある程度防護できる（ただし、一定以上の熱量になればそれら自体も発火する。）が、夏場であれば相対的に肌の露出が多く、また衣服も薄手なため、被害は大きくなるだろう。

また、放射された熱線は、光と同時に届き、一定の時間継続して熱傷を引き起こす。参考文献[31]に示されている方法で求めた熱線の放射継続時間（エネルギーの8割を放出するのに要する時間）は、1キロトンの地表爆発で0.5秒、16キロトンの地表爆発で1.9秒、16キロトンの空中爆発で1.4秒、1メガトンの空中爆発で8.7秒となっているが、実際は、最初の極めて短い時間のうちに過半が放射されている。例えば、1メガトンの空中爆発の場合、熱線のエネルギーの半分がわずか1.4秒で放出され、この時点で最低でも半径9km以内の人間がⅢ度の熱傷を負うことになる。さらに、爆心地に近づくほど、より短時間で多くのエネルギーを受けることになる。このため、爆心地から遠く離れた場所にいない限り、回避行動をとって被害を軽減することはできない。

一方、火球から発せられた光による一時的な視力喪失（一時的な目のくらみ。火球に焦点が合った場合には網膜熱傷を負う。）は、熱傷が発生する範囲をはるかに超えた広範な地域で発生するだろう。この範囲を推定することはできなかったが、参考文献[31]に示されている例では、昼間（快晴）に高度1万フィート（約3km）で1メガトンの核爆発があった場合、爆心地から21kmの地点で10秒間視力が一時的に失われ、53kmの地点でも火球に焦点が合えば網膜熱傷を起こすとされている。このため、広範な地域で交通事故等の被害が生じるものと考えられる。

29
第4章 核兵器攻撃による被害想定

(4) 火災

熱線により可燃物が発火し、あるいは爆風による建物等の破壊が可燃物の引火を誘発して広範な地域に火災が発生するだろう。どこまでの範囲で火災が発生するかは、種々の条件によるため一概には言えない。鉄筋コンクリートあるいは鉄骨造の建物が増え、かつ種々の防火対策がとられており、また、スプリングクラーによる消火の可能性もあるが、爆風により窓ガラスが破壊され、内部の仕切り壁やドア等が吹き飛ばされれば、62年前と同じように、そうした建物も躯体を残して全焼してしまう可能性もあるだろう。また、路上の自動車に代表されるように当時は少なく、あるいはなかった可燃物に今日の都市は満ち溢れていることも火災を大きくする要因となるだろう。

このため、ここでは62年前の全焼範囲（半径約2km）を基に、この範囲での爆風の過圧の値や熱線の強さを勘案して、大規模な火災が発生する範囲を想定した。地表爆発の場合には、建物等による熱線の遮蔽が空中爆発の場合に比べて大きくなることから、空中爆発の場合に比べて火災は限定的なものとなるかもしれない。また、1メガトンの空中爆発の場合には、広範囲に強力な熱線が放射されることにより、市街地火災以外にも大規模な山林火災が発生する可能性がある。

なお、参考文献[43]には、熱線により都市に存在する一般的な可燃物が発火するもしそのしきい値を求める式が示されている。これらの範囲を表4-6に示す。

<table>
<thead>
<tr>
<th>区分</th>
<th>1キロトン</th>
<th>16キロトン</th>
<th>1メガトン</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1m</td>
<td>1m</td>
<td>600m</td>
</tr>
<tr>
<td>大規模火災の範囲</td>
<td>0.3km</td>
<td>1.1km</td>
<td>2.0km</td>
</tr>
<tr>
<td>参考文献[43]による範囲</td>
<td>0.5km</td>
<td>1.5km</td>
<td>2.7km</td>
</tr>
</tbody>
</table>

※大規模火災の範囲は、62年前の全焼範囲（半径約2km）を基に、この範囲での爆風の過圧の値や熱線の強さを勘案して想定したものである。

なお、62年前には、全焼地域の一部で火事嵐が発生している。今日の広島において、火事嵐が起こるかどうかを評価することはできなかったが、その可能性は否定できず、危険性は十分認識されるべきであろう。特に、1メガトンのケースのように高威力の核兵器の場合、熱線の影響が極めて大きくなることから、これにより多くの人命が失われるとの指摘もある[44]。
(5) 残留放射線
残留放射線とは、
・ 核爆発から放射された中性子を浴びて放射性物質となった地上の物質から放射される放射線と、
・ 核分裂生成物（核分裂反応後の放射性物質）、未分裂の核物質及び中性子を浴びて放射性物質となった地上の物質等が大気中に巻き上げられたものから成り、やがて地上へと落ちてくる放射性降下物から放射される放射線から成る。この残留放射線の影響は、空中爆発の場合と地表爆発の場合はで大きく異なる。

① 空中爆発の場合
16キロトンの核兵器の空中爆発（爆発高度600m）の場合、爆心地周辺では、相当程度の期間、レベルの差こそあれ、放射性物質となった地上の物質からの残留放射線が観測されるだろう。これにより、少なくとも爆発後1時間は、爆心地から半径500m以内に救助に入ることはできないだろう[28]。また、その後の救助活動やさらには復旧活動にも、この残留放射線は足かせとなるだろう。実際には、様々な物質が中性子により放射性物質となる（ガラスも放射性物質となる[31]）。ため、実際にどの程度の線量となり、どこまでの範囲がいつまで立ち入れないのかは、現場での線量測定により判断することになるだろう。例えば、62年前、爆発時に爆心地近くの地下にいて、その後避難した被爆者の末梢血リンパ球の染色体異常を調べたところ、その損傷具合から0.9〜3.35 Svの放射線を浴びたと推測された4つの事例もあった。
一方、62年前には、放射性降下物は、黒い雨として、極めて広い範囲に降り注いだ。避難の最中にこの黒い雨に遭い原爆特有の症状（嘔吐、脱毛など）が出た人もあったと報告されている。しかし、その後実施された各国の核実験からの放射性降下物の影響により、残念ながらどの地域に放射性降下物がどのくらい降下したのかは、正確には測定されていない。広島の場合、己斐・高須地区の初期の線量測定があるが、被害を算出するには、行動範囲や降雨量、体内への取り込みの有無等複雑な条件設定が必要であり、一様に被害状況を示すことは困難である。このことは先に触れた放射性物質となった地上の物質からの残留放射線による被害についても同様である。
なお、黒い雨は必ず降るのかどうかを断定することはできないが、当時と同じような天候の下で火災等が起れば、同様に黒い雨に見舞われるものと思われる。
1メガトンの核兵器の空中爆発（爆発高度2,400m）の場合も、基本的には
第4章 核兵器攻撃による被害想定

同じであるが、16キロトンの核兵器の場合に比べ、地表面に到達する中性子線量が低く、ゆえに地上的物質が放射性物質となるレベルは相対的に低くなるだろう。また、放射性降下物においても、雨として降下する可能性は否定できないが、より高空へと巻き上げられるため、相対的な危険性は低下するだろう。

② 地表爆発の場合

地表爆発の場合、残留放射線、特に放射性降下物からの残留放射線が広範な地域に被害を及ぼす。

16キロトンの核兵器の地表爆発（爆発高度1m）の場合、爆心地周辺は、半径約270mになると推定される火球に呑み込まれ、地面には、推定で半径約50m、深さ約21mのクレーターができるだろう。1キロトンの核兵器の場合には、火球の半径は約90m、クレーターは半径約17m、深さ約8mとなると推定される。そして、そこから大量の中性子を溶け放射性物質となった大量の土砂等が、核分裂生成物等と一緒にとなって、火球、そしてキノコ雲の上昇とともに上空に巻き上げられる。

巻き上げられた土砂等のうち、比較的粒子の大きなものは、早くから爆心地周辺に落下する。小さな粒子は放射能を帯びた塵となり空中を浮遊し、風に流されて、やがて人々の上に降り注ぎ被害をもたらす。

この放射性降下物の塵があるにどれくらい、いつまでに降り積もるかを予想するのは極めて難しい。一般的には爆心地から風下に向かうとされているが、キノコ雲は上空数キロメートルにまで上昇するため、高度別の風向、風速の変化や地形など様々な要素が考慮されなければならない。また、米国の核実験でも明らかのように、これらの雲はすべての地域に一様に降り積もるわけではなく、時として周囲よりもはるかに高線量の地点を形成する。

また、降雨に見舞われた場合には、塵がその雨によって洗い流され、拡散範囲も限定的なものとなるかもしれないが、その場合には、さらに高線量となるだろう。

ちなみに、参考文献[31]には、放射性降下物の拡散範囲を予測するための簡単な方法が示されており、その方法により求めた結果を図4-1に示す。これは、地表と上空での風向のずれを15度、平均風速を時速24kmとした場合のものである。

なお、この方法では、放射性降下物の拡散範囲は、爆発1時間後の放射線

26 参考文献[31]では、このような放射性降下物が重大な問題となるのは、誤差±30%で爆発高度が180×W^0.4フィート以内（16キロトンの場合で166m以内）の場合であるとしている。なお、ここでWはキロトンを単位とする核兵器の威力である。
量率を基準として描かれる。そして、それぞれの地点での残留放射線（ガンマ線）量は、この爆発1時間後の線量率を基に計算することになる。表4－7は、放射性降下物が爆発後直ちにすべての地域に降り積もった場合の値の放射線量を爆発1時間後の線量率別に示したものである。

図4－1 参考文献[31]による放射性降下物の拡散範囲と線量率の予測結果

※地表と上空での風向のずれが15度、平均風速が時速24kmという条件の下で参考文献[31]に示されている方法により求めた放射性降下物の拡散範囲の予測結果である。1キロトンの場合、爆発1時間後の線量率が0.01Sv/hとなる拡散が風下64.4km地点まで広がり、その拡散の幅は5.3kmとなる。さらに威力の大きな16キロトンでは、0.01Sv/hの拡散は、風下224.1kmまで広がり、その幅も20.1kmとなる。なお、この例で言う0.01Sv/hは、あくまで爆発1時間後の線量率であり、数時間かけて数十km先に到達した際の実際の線量率はさらに低くなる。なお、ここでは参考文献[31]での単位をSvに換算して示している。

表4－7 放射性降下物からの残留放射線量（図4－1での滞在時間と集積線量）

<table>
<thead>
<tr>
<th>区 分</th>
<th>集積線量（ガンマ線・Sv）</th>
</tr>
</thead>
<tbody>
<tr>
<td>爆発1時間後の線量率</td>
<td></td>
</tr>
<tr>
<td>1-30分</td>
<td>30-60分</td>
</tr>
<tr>
<td>毎時30Sv</td>
<td>131.14</td>
</tr>
<tr>
<td>毎時10Sv</td>
<td>43.71</td>
</tr>
<tr>
<td>毎時3Sv</td>
<td>13.12</td>
</tr>
<tr>
<td>毎時1Sv</td>
<td>4.38</td>
</tr>
<tr>
<td>毎時0.3Sv</td>
<td>1.32</td>
</tr>
<tr>
<td>毎時0.1Sv</td>
<td>0.44</td>
</tr>
<tr>
<td>毎時0.03Sv</td>
<td>0.13</td>
</tr>
<tr>
<td>毎時0.01Sv</td>
<td>0.04</td>
</tr>
</tbody>
</table>

※参考文献[31]の方法により求めた地上1mの地点での推定線量。

33
第4章 核兵器攻撃による被害想定

実際の放射線量を計算するには、これに放射性降下物がその地点に到達するまでの時間を考慮しなければならない。参考文献[31]では、放射性降下物の到達時間の目安は距離を風速で割ったものとすればよいとしており、これに従えば、例えば、1キロトンの場合、毎時0.3 Svの核円は風下25.7 kmの地点に約1時間で到達することになるため、その地点の実際の放射線量は、「1分から2時間」以降の線量から最初の1時間（「爆発後1分から1時間」）の線量を引けば求められる。

図4－1の予測と対比させる意味で、米国の核実験において実際に観測されたデータを図4－2に示す。条件が異なるため、単純に比較できるわけではないが、正確な予測が困難であることは理解できるだろう。このため、本報告書では、図4－1で示した予測法による死傷者推計は行わなかった。

図4－2 米国の核実験で観測された放射性降下物の拡散範囲[45]

※核兵器の威力はいずれも1.2キロトンであったが、爆発高度については、左は地下5 m、右は地上1 mであった。爆発時の地表と上空での風向のいずれも、左で最大60度、右で最大20度であった。左の例では、爆心地の北約1.1 kmの地点に周囲よりも著しく高い線量率を示す地点（ホットスポット）が見える。なお、この図では地上1 mの高さでの爆発1時間後のガンマ線の線量率を照射線量の単位であるR（レントゲン）で示している。1Rは、ガンマ線の場合約0.01 Svである。
(6) 総合評価

① 空中爆発の場合

空中爆発における推計死傷者数を表4-8に示す。（詳細は付録C表C-15, C-18, C-23及びC-24参照）

堅牢な建物が増えた今日、初期の被害、特に初期放射線の大量被曝や建物の倒壊による圧死等は当時に比べて大いに減少する可能性がある。今回用いた推計方法は、爆発時に市民の大半（約3／4：付録C表C-16参照）が堅牢な建物の中にいて、かつその建物の防護効果を最大限見込んだものであり、最低でもこれぐらいの被害が生じるという目安として解されるべきものである。

表4-8 空中爆発による推計死傷者数

<table>
<thead>
<tr>
<th>棟兵器の威力</th>
<th>16キロトン</th>
<th>1メガトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>爆発高度</td>
<td>600m</td>
<td>2,400m</td>
</tr>
<tr>
<td>推計結果</td>
<td>急性</td>
<td>死者</td>
</tr>
<tr>
<td></td>
<td>負傷者</td>
<td>20万5千人</td>
</tr>
<tr>
<td></td>
<td>死傷率</td>
<td>46.4%</td>
</tr>
<tr>
<td>後障害</td>
<td>被曝者15万5千人29</td>
<td>被曝者4万6千人</td>
</tr>
<tr>
<td>(過剰発症28)</td>
<td>白血病・がん1万3千人</td>
<td>白血病・がん1千人</td>
</tr>
</tbody>
</table>

※一定の仮定の下での推計結果である。仮定及び推計方法については付録Cを参照のこと。

（参考）被害想定事例[41]での推計方法によるもの

<table>
<thead>
<tr>
<th>推計結果</th>
<th>急性</th>
<th>死者</th>
<th>14万4千人</th>
<th>60万2千人</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>負傷者</td>
<td>18万4千人</td>
<td>35万9千人</td>
<td></td>
</tr>
<tr>
<td></td>
<td>死傷率</td>
<td>56.1%</td>
<td>70.7%</td>
<td></td>
</tr>
</tbody>
</table>

※この推計結果は、仮定及び推計方法により結果に幅が出ることの例を参考として示したものである。詳細は付録C表C-15及びC-23参照のこと。

こうした中、不幸にして爆心地付近にいた人や屋外にいて遮蔽のなかった人は当然その被害を免れ得ない。そうした人達は、閃光を見る前に大量の初

27 被爆後概ね3～4月以内を指す。
28 ここでは、放射線に被曝することにより白血病やがんの発症リスクが通常に比べてどれだけ高まるかを示すため、その過剰発症数、すなわち0.01Sv以上の放射線に被曝した場合の白血病やがんの発症確率を放射線被曝がなかった場合の発症確率との差を被曝者数に乗じて得た人数を後障害の人数として示している。
29 0.01Sv以上の初期放射線に被曝した生存者（負傷・無傷）として定義している。
第4章 核兵器攻撃による被害想定

期放射線を浴び、閃光後直ちに爆風と熟線により被害を受ける。幸いにして、堅牢な建物の中にあり初期放射線や熟線の影響を免れたとしても、粉々になった窓ガラスや内外壁、さらには備品類等が爆風で飛散し凶器と化すだろう。また、高層ビルでは通常、人の輸送にエレベータが使用されているが、爆風等による破壊や停電でその機能は停止し、生存者は一斉に避難階段に殺到することが予想される。しかしながら、米国の9.11事件に見られるように、避難階段は、一般に一度に各階の人が利用できるようには設計されておらず、また散乱した室内的備品等が障害となって将棋の倒れとなり、押しつぶされて死亡者が増大すると考えられる。また、残留放射線の影響で外部からの救急がままならない中、高層階から重傷者を避難させることも難しいだろう。さらに屋外に逃れても、道路は建物や自動車の残骸で埋め尽くされ、特に自動車が炎上すれば、とりわけ避難の支障となるだろう。そうした中、火の手が迫り人々は逃げまどることになる。避難の途中で放射性物質となった地上の塵や灰を浴びたり、吸収したり、あるいは黒い雨に打たれたりして、残留放射線に被曝する人もいるだろう。

図4-3 16キロトンの核兵器が高度600mで爆発した場合の各種影響範囲

※表4-2、4-3、4-5、4-6に示した範囲を図に示したもの。正確な距離測定に基づくものではなく、およその目安である。なお、背景地図には、国土地理院の数値地図25000（地図画像）『広島』を使用した。
こうした影響を考慮すると、推計上の負傷者の多くは死者となってしまだろう。例えば、大規模な火災が発生すると仮定している地域の負傷者の約1/3が死者に変わったとすると、死者は16キロトンの場合で10万人、1メガトンの場合で46万人となる。また、1メガトンの場合、火災の影響を重視し80万人が死亡するという推計方法もある（付録C表C－23参照）。

図4－4 1メガトンの核兵器が高度2,400mで爆発した場合の各種影響範囲

※表4－2、4－3、4－5、4－6に示した範囲を地図上に示したもの。正確な距離測定に基づくものではなく、およその目安である。なお、背景地図には、国土地理院の数値地図25000（地図画像）『広島』を使用した。

② 地表爆発の場合

地表爆発（爆発高度1m）における推計死傷者数を表4－9に示す。ただし、これには放射性降下物による影響は含まれていない。（詳細は付録C表C－28及びC－35参照）

空中爆発の場合と同様、この推定結果は堅牢な建物の防護効果を最大限見込んだものであり、最低でもこれくらいの被害が生じるという目安として解されるべきものである。すなわち①で述べたのと同様に推計上の負傷者の多くが死者となってしまろう。加えて、実際には、放射性降下物が広範な地域に拡散し、これにより多くの人々が残留放射線に被曝し傷つくことになる。
第4章 核兵器攻撃による被害想定

表4－9 地表爆発による推計死傷者数（放射性降下物の影響を除く）

<table>
<thead>
<tr>
<th>核兵器の威力</th>
<th>1キロトントン</th>
<th>16キロトントン</th>
</tr>
</thead>
<tbody>
<tr>
<td>推計結果</td>
<td></td>
<td></td>
</tr>
<tr>
<td>性</td>
<td>死者</td>
<td>死者</td>
</tr>
<tr>
<td>期</td>
<td>1万人</td>
<td>5万5千人</td>
</tr>
<tr>
<td></td>
<td>負傷者</td>
<td>14万6千人</td>
</tr>
<tr>
<td></td>
<td>34.4％</td>
<td>43.9％</td>
</tr>
</tbody>
</table>

※一定の仮定の下での推計結果である。仮定及び推計方法については付録Cを参照のこと。

（参考）被害想定事例[41]での推計方法によるもの

<table>
<thead>
<tr>
<th>推計結果</th>
<th>性</th>
<th>死者</th>
<th>死者</th>
</tr>
</thead>
<tbody>
<tr>
<td>急</td>
<td>1万5千人</td>
<td>9万9千人</td>
<td></td>
</tr>
<tr>
<td>性</td>
<td>負傷者</td>
<td>5万5千人</td>
<td>14万1千人</td>
</tr>
<tr>
<td>期</td>
<td>死傷率</td>
<td>40.4％</td>
<td>52.1％</td>
</tr>
</tbody>
</table>

※この推計結果は、仮定及び推計方法により結果に幅が出ることの例を参考として示したものである。詳細は付録C表C－28及びC－35参照のこと。

図4－5 1キロトントンの核兵器が高度1mで爆発した場合の各種影響範囲

※表4－2、4－3、4－5、4－6に示した範囲を地図上に示したもの。正確な距離測定に基づくものではなく、およその目安である。なお、背景地図には、国土地理院の数値地図25000（地図画像）『広島』を使用した。
24つのケースについて想定される被害

図4-6 16キロトンの核兵器が高度1mで爆発した場合の各種影響範囲

※表4-2、4-3、4-5、4-6に示した範囲を図上に示したもの。正確な距離測定に基づくものではなく、およその目安である。なお、背景図には、国土地理院の数値地図25000（地図画像）『広島』を使用した。

先にも述べたように、放射性降下物の拡散範囲を推定することは困難であるが、ここでは、その脅威を示すため、表4-10のような単純な仮定を設けて、その人的影響をシミュレーションした。シミュレーション結果を表4-11に示す。（付録C表C-29、C-30、C-31、C-36、C-37及びC-38参照）

シミュレーション結果を見ても明らかのように、屋内退避と避難が適切なタイミングで行われなければ、放射性降下物は極めて大きな被害を及ぼす。

ここでは、放射性降下物がある一定の範囲に一様に降り積もると仮定したが、実際には、放射性降下物は主に風下に向かって広い範囲に拡散する（拡散範囲の規模を示す例を図4-7に示す）。また、特に粒子の大きなものは、風上も含めて爆心地周辺に降下するのも事実である。さらに図4-2に示したように時として周囲よりもはるかに高線量の地点を形成することもある。このため、以上のような仮定に基づくシミュレーション結果が現実となるような地域が存在する可能性は否定し得ない。
第4章 核兵器攻撃による被害想定

表4－10 放射性降下物の影響をシミュレーションする上で仮定

<table>
<thead>
<tr>
<th>区 分</th>
<th>1キロトン</th>
<th>16キロトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>被曝線量</td>
<td>参考文献[31]の例に従い、全放射能の6割が早期に降下。このうちの半分が、爆発1分後に一定範囲に一定に降り積もった場合のガンマ線およびベータ線量を計算。</td>
<td></td>
</tr>
<tr>
<td>降下範囲</td>
<td>爆心地から半径1km以内</td>
<td>爆心地から半径3km以内</td>
</tr>
<tr>
<td>生存者の行動</td>
<td>以下の3つのケースを想定</td>
<td></td>
</tr>
<tr>
<td></td>
<td>爆発後直ちに避難を開始</td>
<td></td>
</tr>
<tr>
<td></td>
<td>爆発から1時間屋内に退避し、その後避難を開始</td>
<td></td>
</tr>
<tr>
<td></td>
<td>爆発から7時間屋内に退避し、その後避難を開始</td>
<td></td>
</tr>
<tr>
<td>避難に要する時間</td>
<td>一律20分</td>
<td>爆心地から1.5kmまでが1時間、1.5kmから3kmまでは30分</td>
</tr>
<tr>
<td>その他</td>
<td>屋内退避中は、残留放射線から完全に防護され、避難中に肌の露出はなく、放射性物質の吸入もない。火災の影響も全くないものとする。</td>
<td></td>
</tr>
</tbody>
</table>

※個々の仮定については付録C（109、113ページ）を参照のこと。

表4－11 放射性降下物の影響に関するシミュレーション結果

<table>
<thead>
<tr>
<th>区 分</th>
<th>1キロトン</th>
<th>16キロトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>爆発後直ちに避難を開始</td>
<td>死者：10万人</td>
<td>死者：40万2千人</td>
</tr>
<tr>
<td></td>
<td>負傷者：1万3千人</td>
<td>負傷者：8千人</td>
</tr>
<tr>
<td></td>
<td>後障害：200人</td>
<td>後障害：1</td>
</tr>
<tr>
<td>爆発から1時間屋内に退避し、その後避難を開始</td>
<td>死者：5万5千人</td>
<td>同上</td>
</tr>
<tr>
<td></td>
<td>負傷者：5万8千人</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後障害：1万5千人</td>
<td></td>
</tr>
<tr>
<td>爆発から7時間屋内に退避し、その後避難を開始</td>
<td>死者：1万人</td>
<td>死者：6万2千人</td>
</tr>
<tr>
<td></td>
<td>負傷者：5万人</td>
<td>負傷者：34万8千人</td>
</tr>
<tr>
<td></td>
<td>後障害：1万人</td>
<td>後障害：6万6千人</td>
</tr>
</tbody>
</table>

※上記の死傷者数は表4－9の死傷者数に、表4－10に示す仮定に基づく残留放射線の影響を加味したものである。

試算では、屋内退避中は、残留放射線から完全に防護され、避難中に肌の露出はなく、放射性物質の吸入もない仮定したが、地下室等放射線の遮蔽効果が極めて高い避難場所を見つからなければ、屋内退避中も絶えずかかなり
のガンマ線に被曝し続けることになる。参考文献[46]には国際原子力機関（IAEA）が目安としてまとめた各種構造物の遮蔽効果が例示されており、その一部を表4－12に示す。少なくとも、1キロトンでは2.4km、16キロトンでは6.1km以内では窓ガラスの破壊が見込まれ、そこから放射能を帯びた塵が進入していく。

図4－1 地図上に示した場合、左が1キロトン、右が16キロトンの核兵器によるものである。正確な距離測定に基づくものではなくおおよその目安である。なお、背景地図には、国土地理院の数値地図200000（地図画像）『日本－Ⅲ』を使用した。

そして、避難中に放射性物質の吸引を完全に避け、肌を全く露出させないというのも現実には難しい。その場場合には、ベータ線（体内への取り込みに関してはアルファ線）が大きな問題となる。例えば、16キロトンの例では、7時間後に避難することにより、ガンマ線の急性期の影響は大きく回避できるかもしれないが、ベータ線は依然として重度の放射線皮膚障害（熱傷に似た障害）を引き起こすに足るレベルにあり、これが他の傷害とも相まって致命傷となることも容易に想像できる。

なお、ここでは爆発から放射性降下物が実際に地上に降り積もるまでの時間を考慮していない。降下する範囲がわかり、かつ避難に十分な時間があれば

41
第4章 核兵器攻撃による被害想定

ば、そこから避難するのがベストの選択である。しかし、爆心地周辺では10〜20分後には放射性降下物が降り積もり始めるとされており[47,48]、爆心地に近ければ近いほど、現実には十分な猶予も期待できないだろう。

表4-12 放射性物質のガンマ線による被曝の低減係数
（浮遊放射性物質のガンマ線）

<table>
<thead>
<tr>
<th>場所</th>
<th>低減係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋外</td>
<td>1.0</td>
</tr>
<tr>
<td>自動車内</td>
<td>1.0</td>
</tr>
<tr>
<td>木造家屋</td>
<td>0.9</td>
</tr>
<tr>
<td>石造り建物</td>
<td>0.6</td>
</tr>
<tr>
<td>木造家屋の地下室</td>
<td>0.6</td>
</tr>
<tr>
<td>石造り建物の地下室</td>
<td>0.4</td>
</tr>
<tr>
<td>大きなコンクリート建物（扉及び窓から離れた場合）</td>
<td>0.2以下</td>
</tr>
</tbody>
</table>

（沈着した放射性物質のガンマ線）

<table>
<thead>
<tr>
<th>場所</th>
<th>低減係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>理想的な平滑な面上1m（無限の広さ）</td>
<td>1.00</td>
</tr>
<tr>
<td>通常の土地の条件下で地面から1mの高さ30</td>
<td>0.70</td>
</tr>
<tr>
<td>平屋あるいは2階だての木造家屋</td>
<td>0.40</td>
</tr>
<tr>
<td>平屋あるいは2階だてのブロックあるいは煉瓦造りの家屋</td>
<td>0.20</td>
</tr>
<tr>
<td>その地下室</td>
<td>0.10以下</td>
</tr>
<tr>
<td>各階が約450〜900㎡の面積の3〜4階だて建物1階及び2階</td>
<td>0.05</td>
</tr>
<tr>
<td>その地下室</td>
<td>0.01</td>
</tr>
<tr>
<td>各階の面積が約900㎡以上の多層建築物上層</td>
<td>0.01</td>
</tr>
<tr>
<td>その地下室</td>
<td>0.005</td>
</tr>
</tbody>
</table>

※出典：参考文献[46]

③ まとめ

62年前のあの日、当時の広島市内には35〜42万人がいたとされる[49]が、今日、爆心地から4.5km以内の昼間人口は58万人（夜間人口は45万人）と推定され、当時よりもはるかに多い。今回の推定死傷者数が当時よりも少ない理由は既に説明したとおりだが、これはあくまで、最低でもこれくらいの被害が

30 通常の土地の条件下で地面から1mの高さでの低減係数は0.7となっているが、実際の遮蔽効果は周囲の環境によって大きく異なってくることから、本書では、線量計算に当たって地形等による遮蔽効果を見込んでいない。
３ 人的被害の軽減は可能か - 被害想定からの示唆 -

以上のよう人の被害想定結果に基づき、核兵器攻撃への対処、すなわち人的被害の軽減の可能性について、いくつかの問題点を提起する。被害軽減のための対処には、個人としての対応と行政機関等としての対応がある。まず個人としての対応について検討し、その上で行政機関等が行うべき対応についての課題を掲げる。行政機関等が、この課題に対応し得るかどうかについては、本章での問題提起を受けて、第5章において詳しく論ずる。

(1) 個人としての対応

核兵器攻撃災害において、個人がどのように行動すべきかについては、国のパンフレット『武力攻撃やテロなどから身を守るために』のほか様々な文献にその方策が示されている[47,48,50]。ここでは、それらを参照しながら、その課題を提起する。
第4章 核兵器攻撃による被害想定

① 最初の1分間３１への対応

起爆後1分間の影響、すなわち初期放射線、爆風及び熱線の影響を避ける上で最も重要なポイントは、行政機関等から事前に警報が発せられるか否かである。警報発令から爆発までの間にどのくらいの猶予があるかは別にして、警報が発せられれば、堅牢な建物内の窓のない、あるいは少ない場所に避難することが可能となり、これにより最初の1分間の影響による被害を大きく軽減することができるだろう。ただし、近くにそうした建物があるというのがこの前提である。

逆に警報がない場合には、「核爆発の方向を見ない」「閃光を感じたら、その場に伏せる、または物陰に隠れる」といった限定的な対処しか行えない。初期放射線の影響は避けがなく、また、事実圏線の影響も避けようがない。一方、爆風は、爆心地から離れるにしたがって、それが到達するまでに数分の時間的余裕が生まれる。伏せるだけでも吹き飛ばされる危険性は随分と低下する。

ただし、実際にこれを行うためには、例えば、職場や学校、自宅等において、いざという時に逃げ込むべき場所を調べていただいたり、それぞれの場所に防災用品を整えたり、爆風に対するとっさの防護行動等についての情報を集めたり、また場合によっては、その訓練を行っておくなどの事前の準備が必要である。

② 1分以降への対応—空中爆発の場合

1分以降への対応において重要のは、残留放射線の影響をいかに避けるかである。空中爆発と地表爆発では残留放射線の影響は大きく異なる。

まず、空中爆発の場合には、爆心地に近いほど地上的残留放射線の影響が大きく、直ちにそこから避難することはさらなる被害を生むことになる。残留放射線は最初の1時間で大きく減衰する。このため被災者は、少なくとも1時間は残留放射線の影響を避けるため、「地下室や窓のない部屋などの場所（ただし、収容能力には一定の限界がある）を探し換気装置を止め、塵の侵入を防ぐために目張り等を行って」そこにとどまり、その後「皮膚の露出を避け、口や鼻を覆い（ただし、アルファ線やベータ線による体内・体外被曝の危険性を低下させることはできるが、ガンマ線を遮蔽することはできない）」「爆心地及び風下３２を避

３１ 爆風や熱線の初期の影響は1分未満で終了するが、ここでは初期放射線の定義に従って、1分を区切りの目安とした。

３２ 被災者が自身の爆発高度を判断することは困難であろう。ゆえに地表爆発の場合と同じく風下を避けて避難する必要があるだろう。
3 人的被害の軽減は可能か—被害想定からの示唆—

けて」避難する必要があるだろう。黒い雨が降れば、当然それも避けなければならない。

程度の差こそあれ建物は被害を受けており（少なくとも窓ガラスは割れている）、建物内への放射性物質の進入が予想される。火災の脅威も大きい。被災者自身が残留放射線のレベルを判断することはできない。また、爆風による破壊やその後の火災により、視界は悪くなるだろう。62年前、多くの被爆者は一瞬気を失い、気がついた時にはあたりは真っ暗になっていた。また、キノコ雲ははるか上空にまで上昇する。地表と上空の風向きが一致しているとは限らない。加えて、火災地域では、火災の影響で地表面の風の流れが変化するかもしれない。そうであるならば爆心地の場所や風向きを被災者自身が特定することは困難だろう。爆心地がわからない場合には、被害の少ない方へ避難すればよいとの議論もあるが、視界が極端に悪ければ、それも困難かもしれない。また、そうした状況の中で、周囲の状況を冷静に判断して行動することにも大変な困難がつきまとる。ゆえに、被害軽減のための適切な避難には、日常の備えと行政機関等による避難誘導が必要不可欠である。

なお、屋内の退避場所の放射性物質による汚染を防ぐため、「屋外にいた場合は、衣服・靴を脱ぎ、二重にしたポリ袋により密封する。石鹸で全身をくまなく洗う」ことが勧められている。二次汚染を防ぐ上で必要な措置であるが、大きな被害を受けた地域においてそれを行うのは、事実上困難だろう。

③ 1分以降への対応—地表爆発の場合

一方、地表爆発の場合、放射性落下物が広範囲にわたって拡散し、大きな影響を与える。残留放射線が致死線量をはるかに超えるところもあり、そうした場所では、地下室等放射線の遮蔽効果が極めて高い避難場所が身近ない限り、屋内退避ではなく、直ちに放射性落下物の範囲外に避難すべきである。特に爆心地に近い場所では、先にも述べたように10〜20分で放射性落下物の影響が现れ始めると言われている。避難の際の留意事項は、空中爆発の場合と同じである。また、屋内退避により、十分な防護が可能と思われる地域においては、同じく上述のような留意事項の下で屋内退避が行われるべきである。問題は、被災者には、爆心地や風向きがわからないことに加え、放射性落下物がどのように拡散するのか、屋内退避ですむのか、避難すべきなのか、屋内退避の場合、いつまでそこにいればいいのか、そして何よりも核爆発が空中で起こったのか、地表で起こったのかを判断できないことである。少なくとも、これらが行政機関等から直ちに伝えられ、適切な避難誘導や屋内退避の指示がなければ、被害の拡大は免れ不得ない。
第4章 核兵器攻撃による被害想定

(2) 行政機関等の対応

以上のように、行政機関等の適切・迅速な対応がなければ、個人としてできるとは極めて限られる。現時点で政府等がどの程度の対応能力を有し、また能力を得ようとしているのかは明らかではないが、もし政府が本気で核兵器攻撃に対処しようとするのであれば、実現可能かどうかは別にして、次のような課題に取り組む必要があるだろう。

① 核兵器攻撃を事前に察知し、直ちに警報を発すること。

核兵器を用いた攻撃であるか否かを事前に察知することは困難と思われるが、その可能性のある攻撃を事前に察知し、直ちに警報を発することで、最初の1分の影響をいくらか軽減することができる。なお、政府は、津波警報、気象警報、武力攻撃の警報等の即時対応が必要な情報を、市町村防災行政無線を用い、全住民に瞬時に一つずつに伝達するシステム（全国瞬時警報システム（J-Alert））の整備を進めている。

② 核兵器攻撃直後直ちに被害範囲を予測し、危険地域からの避難や屋内避難を指示すること。

これまでに述べてきた被害想定は、いずれも核兵器の威力や爆発高度をあらかじめ設定した上でのものである。しかし現実にどのような形態の攻撃が行われるのかを事前に知ることはまず不可能である。

特殊のキソコ雲を見ても核兵器攻撃があったことはやがて判明するだろう。しかし、放射性降下物の拡散範囲や爆心地周辺の残留放射線のレベルなどを予想するためには、核兵器の威力やデザイン、爆心地、爆発高度又は日本、さらにはキソコ雲の高さ、現地の気象条件などを即座に知る必要がある。特に爆発高度又は深度（空中爆発か、地表爆発か、それとも中間か、あるいは地下か）により、残留放射線の強さが著しく異なるので、その判断は対処計算を立てる上で決定的に重要である。しかし、その場合においても放射性降下物の拡散範囲を正確に予測することは難しい。

③ 放射線測定装置及び防護資材を備え、専門的な訓練を受けた相当数の対応要員を現地に直ちに配置すること。

上記の予測とは別に、現地ではリアルタイムに放射線のレベルを測定し、救助の実行、立入禁止区域の設定、市民への屋内避難や避難の指示などを決定する必要がある。ただし、原子力関連施設が立地していない広島市の場合は、十分な装備のストックはなく、近県からの到着を待つような事態となるだろう。
３ 人力被害の軽減は可能か—被害想定からの示唆—

ろう。このことは、対応要員に必要とされる防護服、防護マスク及び線量計についても同じである。製備が整うまでの間にできることは極めて限られている。

また、他の災害とは異なり、対応要員には専門的な訓練が必要であり、かつ対応要員には、救助や避難誘導のほか、立入禁止区域の設定や被災者の除染など様々な任務が期待されるため、相当数の人数が必要である。しかも一人一人の対応要員は、緊急時の線量限度内でしか活動できない。

④ 放射能汚染の拡大を防止するための体制を直ちに構築すること。

放射能汚染の拡大については、2つの問題がある。一つは汚染地域に立ち入ることによるもの、すなわち入市被爆の問題であり、もう一つは汚染地域の中から避難して出てきた者、すなわち被爆者の衣服等に付着した放射性物質によるものである。

このうち、汚染地域への立ち入りの問題については、放射線のレベルが具体的に測定できるようになるまでは、危険と思われる地域への立ち入りを制限し、測定が可能となり、かつ救助要員等が防護服、防護マスクを着用できるようになった段階で改めて立ち入り制限区域を設定し直すという方法しかとり得ないだろう。すなわち、このことは、残留放射線が一定レベルに減衰するまでは、自力で避難できた被爆者しか救助し得ないということになるほどならない。ただし、この方法でも、地表爆発の結果生じる放射性降下物の拡散という事態には、さらなる困難がつきまとまる。拡散範囲の予測結果が示されるまでは「危険と思われる」という判断さえ行えないかどうかである。

もう一つの問題である被爆者の衣服等に付着した放射性物質については、立ち入り制限区域外へ汚染が拡大しないよう、除染措置を講じる必要がある。無傷の者であれば、着用していた衣服を脱ぎ、シャワーを浴びるという方法が考えられるが、数万人以上の人間を対象とした除染施設をどのように設置するのか、また汚染物質を洗い流した水をどう処理するのかという問題が残る。また、外傷や熱傷を負った者は、こうした措置はとり得ず、現地に別に設けた施設、あるいは医療施設において治療と除染とを同時に行わなければならない。その場合には、現地においてトリアージ（患者選別）を行う要員、治療を行う医療施設、そして医療施設への搬送要員・機材にも、二次汚染を防ぐための措置があらかじめ必要となるだろう。また、体内に放射性物質を取り込んだ場合には、それを体外へ排出するための特殊な薬剤が必要となり、そのストッポや輸送も課題となる。医療関係者に対し、こうした専門的な知識の
第4章 核兵器攻撃による被害想定

普及を図る必要もある。規模も数万人以上となる。

なお、高線量の中性子を浴びた場合、遺体も放射性物質と化す。それ以外にも放射性落下物などの微をかぶって汚染されることもあるだろう。これらの遺体をどうするのかという問題もある。

また、爆発の光害や停電、混乱などから、交通事故等による間接的な負傷者も相当数発生すると思われるが、これらの国の治療と被爆者の治療をどのように調整するのか大きな問題となるかもしれない。

一方、復旧の問題を考えると、放射性落下物に汚染された地域には、当分の間立ち入りは困難である。特にクレーター周辺には、莫大な量の放射性落下物が堆積し、最低でも1年は誰も立ち入ることができないような状況になると考えられる。当然のことながら、これらが風雨により拡散し、汚染が拡大することも防がなければならないし、それができなければ拡散の危険がある地域一帯を封鎖し、常時監視を行うことが必要となる。

⑤ 短時間に大量の市民を避難させるための方策をあらかじめ講じておくこと。

地表爆発の場合、放射性落下物の拡散により高レベルの残留放射線の影響を受ける地域については、避難効果の極めて高い退避場所が十分に確保できる場合を除き、屋内避難は避難を行う必要があるが、時間的な猶予は極めて限られる。爆発後直ちに拡散範囲を予測し、避難を指示したとしても、大量の市民を短期間に避難させることは極めて難しい。自家用車での避難は危険である。車の放射線遮蔽効果は低い。渋滞する道路の真上に放射性落下物の雲がかかるとき、逃げ場はない。なお、避難の最中に放射性落下物を多少なりともかぶった可能性のある者についても除染措置が必要であることは言うまでもない。

⑥ 現地での指揮体制及び情報伝達手段を確保すること。

風等による破壊やそれに伴う停電、さらには電磁パルスの影響により、爆心地周辺の通信機器は破壊もしくは使用不能となる可能性が大きい。また、残留放射線の影響でこれらの地域への立ち入りは制限される。そうした事態に対応できる情報伝達手段を予め確保しておく必要がある。加えて、最初の1分間

33 緊急被ばく医療のあり方について（平成13年（2001年）6月、原子力安全委員会）及びこれを受け発した国の防災基本計画（原子力災害編）に基づき、外来診療に対応する初期医療体制、入院診療に対応する二次被ばく医療体制及び専門的入院診療に対応する地域の三次被ばく医療体制で構成される緊急被ばく医療体制・ネットワークの整備・充実が進められており、広島大学は、西日本地域の地域の三次被ばく医療機関に選定されている。
3 人的被害の軽減は可能か—被害想定からの示唆—

の影響により、現場対応の中核となるべき広島県・広島市等が機能しなくなれば、情報伝達等はさらに困難となるだろう。

以上のような視点から、行政機関等は、核兵器攻撃に対する詳細な対処計画を作成し、装備を整え、訓練を行うとともに、人々に、事前にどのような準備を行い、いざという時にはどのように行動すべきか、そしてその時行政機関等にはどこまでの対応ができるのかについて周知させることが必要となる。

こうした対処の可能性、困難性等について、第5章において論じる。
第5章 核兵器攻撃災害への対処

第5章 核兵器攻撃災害への対処

1 対処の検討に当たって

核兵器の大都市での使用に対して、効果的な対策を講じることは不可能であるというの、私たち委員全員の共通認識である。いかなる被害軽減対策も、被害の度合をわずかに減らす効果しか持たないことは、ここ広島や長崎の被爆経験に照らしても明らかである。

そうした共通認識に立ちながらなお、私たちが核兵器攻撃災害への対処について検討する目的は、最善の対処が行われた場合でもなお、その被害軽減効果は小さいことが再確認するために他ならない。核兵器攻撃対処についてリアルな検討を行うためには、虚栄なシナリオを取り上げなければならない。そのことが私たちを尻込みさせる。しかし最善の対処をしてもなお残虐な結果を免れることができないことが再確認されれば、その結論は核兵器廃絶世論の説得力を増すことに寄与するであろう。以上が、核兵器攻撃災害への対処について検討する理由である。

核兵器攻撃災害への対処法について検討するための重要な参考資料として、以下の3種類がある。

第1の参考資料は、歴史上の核災害対処経験である。ここ広島と長崎における核災害対処経験についての資料は、対処方法についての多くの教訓を提供してくれる。また核エネルギー民事利用つまり原子力発電に関わる災害対処についての経験も、多くの教訓を提供してくれる。昭和61年（1986年）4月にウクライナで起きたチェルノブイリ4号機爆発・火災事故や、平成11年（1999年）9月に日本の東海村で起きたJCOウラン加工工場臨界事故は重要である。

第2の参考資料は、米国などで実施された種々のシナリオ分析やシミュレーションのレポートである。それらに含まれる記述は必ずしも包括的ではないが、留意すべき論点が少なくず含まれていることも事実である。

第3の参考資料は、放射線防護や事故対応に関連する法令である。特に民事利用に関わる核災害への対処法をまとめた原子力災害対策特別措置法（以下「原災法」という。）及びその施行令・施行規則などの関係法令34並びにそれらを踏まえて行政機関が作成したマニュアル類は、重要である。原災法の起草作業は、JCO臨界事故の終息後ほどなく始められ、平成12年（2000年）に施行された。これが大量の放射能がまき散らされた環境下での被害軽減方針が書かれた法令として唯一のものであり、ここに示されている手順に準拠して、対処計画を検討するのが便利である。

34 これらは原子力災防法令研究会編著『原子力災害対策特別措置法解説』大成出版社、2000年に一括収録されている。
1 対処の検討に当たって

ただし、過酷事故の具体的シナリオと組み合わされる形で、対処計画の具体的進行を描くシナリオは存在しない。ほとんどの関係文書は対処体制の議論に終始している。多数の関西住民を脅威にさらし死傷者を発生させるような民事用核施設の大災害については、災害対策の想定外とするというのが、この分野における曖昧の了解である[51]。それが政府の武力攻撃原子力災害についての被害想定にも忠実に反映されている。国民保護計画の運用の一環として平成17年（2005年）11月27日、福井県にある関西電力美浜原子力発電所のテロ攻撃を想定した訓練が実施されたが、それでも住民の被爆はないものとされた。政府が核兵器攻撃の被害想定を行わず、またそれらと連動させた具体的な対処計画を示さない一つの理由は、それが民事用核施設の大災害を想定させることにあるとみられる。

本章では、原発災害に規定された対処方法に準拠する形で、過去の核災害対処経験の教訓を織り交ぜつつ、また放射線防護に関する法令を踏まえつつ、核兵器攻撃を下記の2つのステージに区分して、災害への最善の対処方法がどのようなものであるかを示す。

第1ステージ：核兵器攻撃開始前
第2ステージ：核兵器攻撃開始後

そして最善の対処方法をもってしてもなお、若干の被害軽減効果しか発揮しないことを示す。これにより、市民の生命・身体の保護と核兵器使用とは相容れないことを示す。

原発災害に準拠する理由は、具体的なシナリオのベースとして、他に準拠できる法令が存在しなかったからである。国民保護法には、原子力施設への武力攻撃による原子力災害への対処について、第105条・106条に規定があるが、これは原発災害の規定をベースとし、武力攻撃事態等の特殊性を考慮して、補正を加えたものである。また、国民保護法第107条から第110条には放射性物質等（化学兵器、生物・毒素兵器を含む。）による被爆拡大防止に関する規定があり、これは核兵器攻撃にも適用されるものであるが、内容的には留意事項を列举したチェックリストにとどまっている。

本題に入る前に、原子力発電所など民事用核施設の事故と核兵器攻撃との間に、以下のような重要な相違があることを、あらかじめ断っておきたい。

核兵器攻撃の場合は、事前に予期できない場所において、瞬間的に多数の死傷者が発生する。しかも人口密集地が標的となる可能性が高い。住民の死傷の原因は放射線以外にも爆風・熱線があり、それらが複合的に人体に作用する。また多くの場合大規模な火災（ときに火事廃）を伴う。しかも通信・交通を含むライフラインの多くが一挙に破壊する。それには電磁パルスによる通信・電力系統の麻痺も含ま
第5章 核兵器攻撃災害への対処

これに対する対策は、いかに大規模な過酷な事故であっても、あらかじめ決まった場所で起こり、しかもそれは人口密集地から離れている（リモート・サイディングのため）。そのため急性の死傷者数は比較的少ない。生民の死傷の原因は対処行動中の事故を除けば放射線のみであり、爆風・熱線の影響はない。ライフラインが重大な障害を受けることもない。また日本国内の複数の場所で過酷事故が同時発生する可能性は極めて低い。

そうした相違のために、核兵器攻撃災害の過酷な事故は、それが単独で起きた場合に、核兵器発射への対策と比較して、格段に容易である。武力による原子力発電所の破壊型のものにとらす災害についても、基本的に同じことが言える。そうした攻撃にはある程度核兵器は使われず、通常兵器が使われるだろう。核兵器を使うならば、直接大都市中心部を狙った方が一般に大きな被害をもたらすからである。とはいえ条件次第では核兵器施設を核兵器で攻撃するケースもあり得る。核兵器による核兵器攻撃のケースでは、爆発地点が人口密集地でない点は対策しやすい要因であるが、放射線・放射能に関しては、核兵器施設からの放出が追加されるため対策が一層困難となる。なお核兵器施設の事故の場合でも、巨大地震等の災害を併発して起こる場合（いわゆる原発型）においては、通信・交通を含むライフラインの多くが一挙に壊滅するなどの効果が加わるため、単独の過酷事故よりも対策ははるかに困難となる。

2 放射線の防護基準について

核兵器攻撃への対策方策に関する検討を始める前に、放射線の防護基準について最小限の説明しておく。

現在の放射線防護基準——平成2年（1990年）の国際放射線防護委員会ICRP勧告に準拠して平成13年（2001年）から施行された国際法令——は、以下のようにになっている。（ただし単純化のために全身被曝に関する数値を挙げるようにと定めている。）

防護基準は、通常時（この表現は法律上のものではないが、緊急時以外を指す。）と緊急時に分けられる。まず通常時の（実効）線量限度は、職業被曝（法律に定められた放射線業務従事者の被曝）については、5年間の平均20mSvとなっている。ただしその限度内で年間50mSvが認められている。公衆被曝（放射線業務従事者以外の被曝）の線量限度は年間1mSvである。

緊急時には、異なる基準が適用される。多数の防災業務関係者（警察、消
防、自衛隊等）が、誘導・救援等の作業に従事することを前提に、緊急時には、これら防災業務関係者の線量限度として50mSv、さらに災害拡大防止や人命救助等のために緊急かつ止むを得ない作業をする場合の線量限度として100mSvと定められている。放射線業務従事者については、緊急時には（災害拡大防止や人命救助等の理由がなくても）100mSvの線量限度が適用される。

なお平成2年（1990年）のICRP勧告は緊急時について、防災関係者の線量限度を500mSvとしている。これはチェルノブイリ事故を踏まえて定められたものであるが、日本の国内法令には採用されていない。500mSvという数値は致死線量よりは低いものの、急性放射線症のリスクを伴う。それゆえ防災関係者の危険を考慮すればこれ以上の数値は採用しがたい。とはいえこの数値は、多くの人命が危機にさらされている状況において死者を最小化するための基準として作られたわけではない。それゆえ危急の事態の下では防災業務関係者の間で、機械的にこの数値を適用して線引きを行うのではなく、柔軟に運用しようとする動きが起こる可能性も否定できない。

次に、核災害において住民の屋内退避又は避難の目安となる基準として、以下の数値が定められている。外部被曝の予測線量が10〜50mSvのときは、指示に応じて屋内退避、コンクリート建家への退避、又は避難のいずれか。予測線量が50mSv以上のときは、コンクリート建家への退避、又は避難のいずれか、である。つまり予想線量10mSv（当専門部会の被曝者の基準0.01Svと同じ）が指令を出す目安となっている。これは、原発にもとづく「防災対策を重点的に充実すべき地域の範囲」（Emergency Planning Zone：EPZ）——日本では商業発電用原子炉に関しては周辺8〜10キロメートルとされている——に関する指針である。とはいえ核兵器攻撃の場合も、これが適用されると推定される。

なおこれは緊急時の指針であり、短期間の退避・避難に適用される。高濃度の放射能に汚染された地域の除染に関する基準——それを満たせない場合は住民に長期移転してもらうしか——は日本国内には存在しないが、公衆被曝の線量限度である年間1mSvは有力な目安となると考えられる。チェルノブイリ事故では、当時の公衆被曝の線量限度である年間5mSvに基づいて移住区域が設定された。また米国では原子力規制委員会NRCと環境保護庁EPAがそれぞれ、年間0.25mSv及び0.15mSvという、より厳しい基準を出している[52]。

さて、この100mSvという厳しい防護基準を満たす範囲内で、被害状況調査活動、救援活動、誘導活動等を行うことは極めて困難であり、爆心地から数キロメートル以内ではたとえ人命救助等のミッションがあったとしても、爆発から当分の間は立ち入ることさえ不可能である。第4章で検討した16キロトン地表爆発のケースでは、爆心地から3キロ以内で1時間活動するのが許されるようになるのは、爆発8日目となる。
第5章 核兵器攻撃災害への対処

（付録D表D−5参照。第4章に示したシミュレーションで用いた値は、表D−5の値の6割である。）

しかし急性放射線症の自覚症状が現れるのは500mSv以上であるとされており、それを超えても直ちには行動不能とはならない。さらに100mSvという防護基準は、人命喪失最小化の原則によって根拠づけられているわけではない。それゆえ危急の事態においては弾力的な運用が行われる可能性も否定できない。

3 核兵器攻撃対処の第1ステージ：核兵器攻撃開始前

1発目の核兵器が炸裂するまでの期間を指す。このステージは、さらに平常時に警戒時に分けられる。

まず平常時における対処としては、以下の3つの方策が考えられる。
①具体的かつ詳細な対処計画を作成し、公表すること。
②その対処計画に基づいて、防災関係者及び住民に対する研修・訓練を行うこと。

なお、核災害に関しては、放射線・放射能とその対策に関する特別の研修・訓練が極めて重要である。そうした研修・訓練なくして対処計画は全く役に立たない。

③その対処計画に基づいて、現地対策本部を置く司令センターを整備すること。また放射線・放射能情報収集解析ネットワークを整備すること。さらに核災害の消防に関する要員及び資機材（資材・機材）を整備すること。このように核兵器攻撃に関しては、原災法の規定に準ずる備えが必要である。

このうち③は、国民保護法やその基本指針には書かれていないが、核兵器攻撃の現実的な可能性があるという認識を要する場合は、原子力発電所周辺以外の場所中必要である。それは核兵器攻撃が想定されるあらゆる都市に設置しなければならない。（原子力発電所周辺の都市にはすでに設置されているので、現状のままよい。）

原災法の定めるオフサイトセンターには、原子力災害合同対策協議会（つまり現地対策本部）が設置され、それが政府の原子力災害対策本部（内閣総理大臣が本部長を務める。）の指示の下で緊急事態に対処する。このオフサイトセンターは、核施設から8〜20キロメートル程度の距離に置かれる。的確・迅速な指示を出すためには核施設の近くが望ましいが、近過ぎては放射線・放射能の直撃を受けるので、このような距離が指定されている。オフサイトセンターには政府、都道府県、市町村の関係者が一堂に集結し、原子力事業者、警察、消防、自衛隊などに指示を出す。交通・通信手段が整備され、放射線・放射能のモニターが整備される。さらに被曝の低減や放射能の除染のための最小限の機能が整備される。そしてそれらすべてを収容するための十分なスペースを持つことが、オフサイトセンターの条件である。

なお、政府の対策本部が現地対策本部を指揮し、さらに現地対策本部が対処活動
3 核兵器攻撃対処の第1ステージ: 核兵器攻撃開始前

を指揮するというトップダウン方式が、原災法の基本的考え方であり、国民保護法もそれに同様の考え方により立っている。

また資機材については、原災法施行規則第12条に定められている。そこでは放射線障害防護用器具（防護服、防護マスク等）——これは外部被曝に対してはあまり効果がないが、内部被曝には有効である——を防災要員の人数分備えること、非常用通信機器や各種の計測器を所定の数量以上備えること、などが規定されている。そうした資機材はもちろん事業者の核施設内に保管される。

さて、広島市への核兵器攻撃が現実的に行われるとすれば、常設専門職員団体を核損害を避けるための司令センターを整備することが必要となる。なお、核兵器攻撃地点は不確定であるが、効果を大きくするために都心部が狙われる可能性が高いと考えられる。したがって、市庁舎の内部又はその付近に司令センターを整備するとともに、都心部が攻撃される場合に備えて市庁舎から8～20キロ程度の郊外に予備センターを設置するといった冗長性の確保が必要となる。予備センターを破壊から救うために地下シェルター方式とすることも考えられる。

さらに、核爆発に伴う電磁パルスによる電力系統の麻痺や通信システムの破壊も考慮し、センターに非常用の発電・通信システムを整備しておく必要がある。また、原子力発電所に設置されている緊急時対策支援システムERSS35や、緊急時迅速放射能影響予測ネットワークシステムSPEEDI36のステーションを、都市中心部を覆う形で設置しておく必要がある。さらに放射線障害防護用器具（防護服、防護マスク等）などの資機材については最低限数千人の防災要員が必要となることを考慮し、その人数分だけ確保し、予備センター等に保管しなければならない。（少数の資機材ならば事前の了解に基づき近隣の民事用核施設からヘリコプター等で輸送することも可能だが、多数では対応不可能である。）さらに地下街を公共核シェルターの機能を果たすように整備するという対策もあり得る。

これらは極めて大規模な対策である。その整備は広島市や他の主要都市が、単独でなし得ることではなく、法律に基づく政府の予算措置によって、全国主要都市すべてを対象として実施する以外にない。（広島は日本の主要都市の一つに過ぎないと考えられる。）

35「原子力発電所の万一の事故などの緊急時に電気事業者から送られてくる情報にとどき、当該原子力発電所の機器の状態を監視し、専門的な知識データベースにとどきを現在の施設の状態を判断し、その後の事故進展をコンピュータにより計算して予測するシステム」（文部科学省「環境防災Nネット エネルギー災防網構築推進計画」

36「原子力発電所などから大量の放射性物質が放出され、そのおそれがあるという緊急事態において、周辺環境における放射性物質の大気中濃度及び被ばく線量等環境への影響を、放出源情報、気象条件および地形データを基に迅速に予測するシステム」（同上）
第5章 核兵器攻撃災害への対処

まず、国民の歴史意識に働きかけて人心を動揺させるシンボリックな効果がある点を除けば、他の主要都市よりも核兵器攻撃の標的となりやすいということはない。

しかし、日本への核兵器攻撃の可能性は現時点では低い。このような対策を日本が行うことは、世界でも類を見ない過剰反応である。このような事前準備は無用の浪費であるのみならず、国際社会や周边諸国からは核戦争準備行為とみなされ、軍事的緊張を激化させ、ひいては核軍拡・核拡散を助長するおそれがある。あくまである国のミサイル防衛システムの整備に対し、相手国が対抗策として核戦力の強化を図るのと同様である。さらに後述のように被害軽減対策の効果が極めて限られていることを考慮すれば、それは徒労である。

核兵器攻撃を想定した具体的かつ詳細な対処計画の作成や、それにに基づく特別の研修・訓練も、同じ理由で不要である。

ただし、核災害とその対処法に関して、防災関係者及び住民への教育・啓発活動を進めることは、原子力発電所をはじめとする核施設が世界と日本の至るところに広がっている現在を生きる市民にとって有用である。特に、いつこの危険地帯に命令によって派遣されるかわからない防災関係者にとっては、核災害とその対処法に関する相当程度の知識は必要不可欠である。また、簡易放射線モニタリングネットワークをあらかじめ全国規模で設置し稼働させておくという提案が、民事用核施設の事故の広域的影響を想定して出されているが、このネットワークは有用である。それは核兵器攻撃の際にも転用可能であろう[53]。

幸運にも核兵器攻撃の前兆が、人工衛星写真、レーダー映像、相手方の事前通告、情報機関の報告などにより事前にキャッチされ、事前警報が発令されるような場合、すなわち警戒時において広島市のより得る方策は、次のところである。

仮に平常時から、政府の全面的な指導・支援によって、上記のような強力な対処体制を構築している場合は、その再点検を行いスタンバイ状態へ移行させばよいが、それは現実的には想定しがたい。

それゆえ現実的には、通常の武力攻撃事態対処のためのシステムを起動させることがなる。その運用ガイドラインには、核兵器攻撃に対する事前対処方法はほとんど示されていないが、たとえば爆発が間近に迫っていると思われる場合には、住民に対し屋外から屋内へ移動し、屋内で地下室や窓のない部屋を探すといった一般的な対処法を指示することは可能である。また一定の時間的猶予があるとみられる場合は、都市中心部から、大多数の人口を脱出させるという方策もあり得る。

しかし人口の大半が市内に居残り、そこで核爆発が起こるという状態を回避できない限り、事前措置の効果は限られたものとなる。人口の大半が疎開できれば話は別であるが、標的が不明であり、核兵器攻撃の確率さえ評価しがたいような状況下で、日本全国の主要都市すべてで、それを実施するのは現実的ではない。
の経済活動は長期にわたる完全な麻痺状態に陥るからである。危険情報を発令して妊娠や乳幼児などを市外の軍事基地等から離れた地点へ疎開させ、他の人々にも不要・不急の屋外活動や都市中心部での滞在を控えさせるとともに、防災業務の中核となる幹部・専門職員については、地下室や分厚い鉄筋コンクリートで囲まれた窓のない部屋など、核爆発によって破壊される確率が相対的に低い場所に、可能な範囲で部屋を移動させる、といった対策をとることは可能であるが、それ以上は難しい。

4 核兵器攻撃対処の第2ステージ：核兵器攻撃開始後

このステージはさらに攻撃中と攻撃後に二分されるが、ある瞬間がどちらに該当するかは事後においてのみ判明することである。この時間帯においては、第2次攻撃（再び核兵器を用いる場合もあり得るし、核兵器以外の殺傷手段、たとえばサリンなどの化学兵器の活用もあり得る。）の可能性を常に念頭に置きつつ、政府対策本部の指揮の下で、現地対策本部を中心として、以下の3種類の対処が試みられる。
① 情報の収集・伝達
② 対処措置の決定
③ 対処措置の実施

まず3種類の対処活動すべての前提として、現地対策本部の司令センター機能の健全性が維持されることが不可欠であるが、それは容易ではない。（米国などで実施されてきた種々のシナリオ分析やシミュレーションでは、司令センター機能の崩壊という事態はほとんど想定されていないが、これは楽観的に過ぎる。）

市庁舎や県庁舎は広島市の中心部にあり、都心部への核兵器攻撃により壊滅的な打撃を受ける可能性が高い。その場合、第一撃を生起延べた幹部・専門職員を集めて、大破壊を免れ放射能汚染も比較的少ないビルに、臨時司令部を設置する必要があるが、その設置は相当の時間が必要であり、設置できてもその機能は著しく制約されたものとなる。

さらに、国家主体をはじめ、必要十分な経済力・技術力をもつ主体による核兵器攻撃は一般に、多数の核兵器が多数の標的に対して同時に、又は時間差を置いて炸裂するという形をとると考えられる。もし核兵器攻撃が複数の都市に対して行われた場合、東京の中央対策本部の広島市への関与は手薄になる。とりわけ東京が標的となった場合、永田町・霞ヶ関が壊滅し、中央対策本部そのものが迅速に設置できなくなることも考えられる。仮に総理大臣をはじめとする政府幹部職員の多くが無事であり、迅速な中央対策本部設置が可能であっても、その活動の大半が東京における被害軽減活動に向けられるであろう。そのとき広島市は満身創痍にしかかわらず、広島県や周辺市町村と連携しつつ、自らの手で核災害に対処しなければならない。
第5章 核兵器攻撃災害への対処

なくなる。
もう一つの問題は、国民保護法や原災法に定められたトップヘビーな対策組織が立ち上がるまでに、相当程度の時間を要すると予想されることである。核兵器攻撃は一瞬で大破壊をもたらし、その被害の程度は短時間のうちに決まってしまう。初動対策の遅れは取り返しのつかない結果を招く。国民保護法や原災法の仕組みが、果たして核兵器攻撃に効果的に対応しうる仕組みなのかどうかは疑問である。政府の対策本部が本格的に動き出すまでは、ローカルな自主的対処が必要となるゆえんである。

これから、上記3種類の対処活動を巡る困難性について、一つ一つ論ずる。

情報収集・伝達
これは、すべての活動の基本となるものである。しかしこれは困難を極める。残留放射能により高度に汚染された地域に防災要員が立ち入ることは、前記の防護基準に照らせば、少なくとも爆発後数日間はほとんど不可能であり、汚染地域の情報を得るために利用可能なのは、航空機・ヘリコプター・人工衛星等による上空からの観測手段と、地元の研究教育機関等が保有するか、又は外部から持ち込んだ少数の測定器に限られる。既設の緊急時情報収集解析システムは、原子力発電所等には設置されているが、広島市にはない。さらに通信ネットワークが、爆風・熱線・放射線・火炎・電磁パルスなどによって大規模に破壊されており、それを動かす電力系統も同様となって見込まれる。したがって被害・汚染状況については、ごく大まかな情報しか得られないだろう。
また防救要員及び住民に対する情報伝達も、通信ネットワーク停止の下で困難を極める。自動車やヘリコプターなどによる拡声器等を用いた直接的な情報伝達は、瓦礫の山と強い残留放射線に阻まれて実施困難である。

対処措置の決定
対処措置の中核をなすのは、住民に対して避難又は退避の指示を出し、また避難又は退避を行った住民に対して、水・食料・医療等を提供する救援を行うことである。その他の対処措置としては、被害拡大防止、ライフライン確保、災害復旧などがある。これら対処措置はいずれも実施困難であるが、最大の難間は、市民に対して退避(屋内又はコンクリート建家)かそれとも避難かの二者択一の指示を、地点ごとに的確に与えることである。これが犠牲者数を左右する要因のうち最も重要だとする説がある[52]。
対処の仕方は市内及びその周辺を3つのゾーンに分けたと整理しやすい。
A 被害の大きな爆心地ゾーン
I 一定の破壊・火災が見られる放射能汚染リスクが高い中間ゾーン
４ 核兵器攻撃対処の第2ステージ：核兵器攻撃開始後

ウ 爆心地から数キロメートル以上離れた被害の小さい周辺ゾーン

これらのゾーンは爆心地を中心とした同心円状に描かれるのではなく、風向等の気象条件の影響を受けて複雑な図形となる。それぞれのゾーンの大きさは、核兵器の爆発力に応じて変わってくる。このゾーニングが対処方針策定の基本となる。それは情報の不確実さや気象条件の変化を考慮し、相当程度の不確実の幅を見込んで設定しなければならない。そして随時アップデートし、不確実の幅を減らしていかなければならない。

爆心地ゾーンでは、ほとんどの建物が倒壊するか大きな損傷を受け、火災が広範囲に出発する。また爆発時には致死量の放射線が降り注ぐ。それらの要因により大多数の住民が死亡する。電磁パルスによりこのゾーンの通信システムが崩壊する。生き残った被災者は、情報のない中では、一刻も早く爆心地から離れた場所へ避難することを選択するだろう。しかし、交通網の破壊により徒歩での避難を余儀なくされることが予測されるため、避難中の大量被曝のリスクが高い。

一方、残留放射能は時間とともに急速に減衰するので、無傷に近い地下街・地下室等が付近に存在するか、頑丈なコンクリート建物が無傷に近い形で残っているような例外的な場合には、それへの（数時間から十数時間程度の短時間の）一時避難は一つの選択肢となり得る。ただし、そうした一時避難にも多大なリスクが伴うことは覚悟しておくべきである。

まず地下街の入り口にたどり着くのは、被爆直後の破壊と混乱に満ちた爆心地ゾーンでは困難である。移動に思わぬ長時間を要し、その間に大量被曝するおそれも大きい。地下街の入口にたどり着いても、入口とその周辺は鉄筋コンクリートの瓦礫の山と化し、通行不能のケースが多いと予想される。運よく入口が開いていても、階段は崩壊しているだろう。斜面にへばりつくように下り、地下街内部に入ることができても、そこは真っ暗闇の中に多数の負傷者のひしひしあう空間であり、水や食料や応急手当のための物品は入手困難である。外部からの救援は全く期待できない。その上、入口からは放射能が容赦なく侵入してくれる。また狭い密閉空間に放射能を帯びた多数の避難民が入ると、その自体が高い被曝リスクをもたらす。なお、崩壊を免れた数少ない入口に、多数の避難民が殺到して長蛇の列をつくり、その上空を放射性降下物の雲が襲うという最悪の事態も考えられる。地上での火災が拡大し、長時間にわたり続いた場合、地下街もまた高温・酸欠の状態となる。また地下街という密閉空間は火災に対して脆弱である。人工化学物質が燃えれば有毒ガスが発生する。避難民に地上という逃げ場はない。

爆心地からやや離れた中間ゾーンでは、建物の多くは倒壊や大きな損傷を免れ、大多数の住民は爆死を免れる。しかし放射性降下物の雲が流れてくる風下
第5章 核兵器攻撃災害への対処

や、気象条件などによりローカルに高い濃度の放射能が「黒い雨」などの形をとって舞い降りるホットスポットのように、大量被曝のおそれがある場所が、このゾーンに含まれる。それゆえ風向などの気象条件、交通網の破壊・麻痺の度合いによって、（短時間）一時避難か、それとも避難かの判断が変わり得る。この範囲ゾーンにおける判断が最も困難である。生き残った交通機関の輸送能力を踏まえて、人命救助の観点から最適な選択肢を見い出さなければならない。多数の住民の一斉避難は、交通麻痺を一層深刻なものとし、身動きもままならない被災者の上を放射性降下物の雲が襲うケースも考えられる。

爆心地の遠方にある周辺ゾーンでは、建物の物理的な損傷はごく限られる。またそこに長時間（数日から十数日程度）滞在しても急性放射線症となる可能性は極めて低い。累積被曝線量の目安として、100mSvを十分に下回る水準に抑えるのが、周辺ゾーンの一つの条件である。そこでは防災要員は長時間にわたって救援活動に従事する。また住民は急いで避難する必要はない。しかし、避難が比較的容易な環境にある住民は、一刻を争う必要はないが、迷わず避難を選べば、行政もその決断を支援する措置を講ずべきであろう。ただし、避難の優先順位については、爆心地ゾーンや中間ゾーンから脱出してきた被災者を優先すべきことはいうまでもない。なお、早期の避難が困難な住民は、チェルノブイリ事故の際にドイツなどヨーロッパ諸国の住民がとったような入念な防護対策を講ずる必要がある。

結論的にいえば、屋内退避が避難よりも一般的に優れた対処法であるという議論は、成り立たない。確かに屋内避難が避難よりもはるかに実施が容易であり、数十万人規模の避難が極めて困難であることは否定できない。しかし、判断が困難なケースにおいては、そうした実施の難易度に左右されず、人命救助の観点からよりより適した選択肢を選ばなければならない。

ともあれ、リアルタイムの情報収集が極めて困難な状況下で、避難し避難の振

37 防水と被食、化学汚染の恐れのあるものを避け、汚染前に加工された食品を当分の間利用する。食料が放射能の影響があがり現れるのは牛乳や生野菜であり、他の食料も異ならず要注意となる。第6回、不要・不急の外出を控え、止むを得ぬ外出に際しては、マスク・帽子・ゴーグル等を着用する。マスクは簡易式の防護マスクがあればなよい。それらは自宅後、室内に持ち込まず、靴は玄関で脱ぐ。特に妊婦や子供の外出は極力避ける。また雨中の外出も極力避ける。自宅後は（汚染がない場合）シャワーを浴びて着替える。第3回、自宅では、窓を閉めて外気の出入口を粘着テープ等で塞ぐ。なるべく家屋の中心部（壁や屋根から離れ場所）で過ごすようとする。第4回、放射能汚染の恐れのある水・物品の排出・処分を慎む。なお、行政からの情報をうのみにせず、多様な情報源からの情報を踏まえた冷静・沈着な主体的判断が必要とする場合もある。市民の立場からチェルノブイリ事故時の体験をまとめた作品に、田中たなせ和音『チェルノブイリの雲の下で』（技術と人間、1987年）がある。
4 核兵器攻撃対処の第2ステージ：核兵器攻撃開始後

り分けについて的確な決定を行うのは不可能に近い。

以上の避難・退出に関する記述では、第2次攻撃の可能性を明示することを控えたが、もちろんその可能性が小さいことを念頭において、避難・退出を行うべきである。焼け出された被災者が徒歩で郊外に向かう行列を標的にとして2発目の核爆弾を爆裂させるか、あるいは地下街に逃げ込んだ群衆に対してサリンや火炎瓶を投下することは人心を動揺させる効果が極めて高い。こうした時間差が攻撃のリスクは、対処活動において当然考慮されなければならない。これが出するだけで効果がある。それにより避難・救援活動にブレーキをかけることが可能である。

対処措置の実施

対処措置の実施を、整然とした形で行うことは極めて困難である。まず強調すべきことは、十分な質と量を持つ防災要員を投入することが困難だということである。それは放射線・放射能に関する専門的な知識・経験を持った要員が少ないためである。また、要員が着装する防護服・防護マスク・線量計の数によって、動員可能な要員数が決まってくる。さらに、放射線大量被曝のおそれのある対処活動については、志願制をとることが望ましいが、あえて志願する要員は少ないだろうとも知れない。全国の民事用核施設の従業員から志願者を募れば、より多くの要員を確保することが可能であるが、専門的な知識・経験を有するという理由だけで危険な作業に従事させることは問題を含んでいる。また、それによって十分な要員が確保される保障もない。

一定程度の人数の防災要員が確保できても、爆心地ゾーンに防災要員が入ることは、少なくとも被災後数日間はほとんど不可能であり、被災者の指示・誘導を行うことはできない。将来的にはロボットなど無人の手段の活用はあり得るが、実用段階にはほど遠い。他方、中間ゾーンでは、防護服・防護マスク・線量計で身を固めた防災要員により、避難・退出の誘導・補助活動や被害拡大防止のための諸活動（消防など）を、放射線測定器の警報が鳴るまでのごく短時間に限って行うことは可能であるが、動員可能な防災要員の人数が著しく制約されることと相まって、効果的な誘導・補助活動の展開は期待しがたい。そうした状況下で爆心地ゾーン及び中間ゾーンの住民は基本的に、情報途絶状態の中で持ち合わせの知識と感覚を頼りに、自主的な避難・退出行動を進めざるを得ない。それが全体としてカオス的状況を呈することは想像に難くない。そこに第2次攻撃や偶発的事故が重なれば、パニックの発生は避けられない。

そこで、多くの防災要員が、死の危機に直面する被災者を救うために、長時間にわたり作業を行い大量の放射線に曝されるという状況が起こること。また、多くの住民が、家族や恋人など愛する者を窮地から救うために、同様の事態に遭遇

61
第5章 核兵器攻撃災害への対処

するかもしれない。それは自然な感情に基づくものであり、また必ずしも合理性を欠いた行動であるとは言えない。緊急時の放射線防護基準は、人命喪失最小化の原則によって根拠づけられている基準でないことはもとより、特別に親密な人間関係を想定して作られた基準でもないので、それに拘泥しつらることは適切ではないという判断が現場では働くかもしれない。

とはいえ、防災要員には、限られたマンパワーと装備で、最大限の対処活動を行うという職務上の責務がある。防災要員は、被災者の救援と防災関係者の犠牲の間のデイレクティブを考慮する必要がある。また防災要員は他者の活動に従事させることもできる貴重なマンパワーであり、爆心地近くでの救援よりも周辺部での除染や治療補助に当たらせた方が多くの市民の生命を救うことができるとの指摘もある[54]。しかし何が最善であるかをリアルタイムに判断することは難しい。

ともあれ、被災者たちは、基本的には自主的な避難行動により、また防災要員の誘導・補助活動にも助けられて、周辺ゾーンまでたどり着く。そこからが救援活動の始まりである。まず真っ先に行うべきは被災者の除染38であり、それにより身体・衣服の付着物による追加の被曝を避けることができる。また体内で放射能を吸着するキレート剤の服用により排泄を促進することが可能である。

その上で負傷者に対する医療が提供される。しかし、ここに核災害対処の最大の困難がある。爆心地ゾーンから中間ゾーンにかけての医療機関はほとんど崩壊するか、又は機能停止状態となっており、医者・看護師、専門スタッフもその多くは死亡又は負傷している。周辺ゾーン及び他の都市の医療機関が、医療において中心的役割を担うこととなる。

具体的には、周辺ゾーンにあり被難を免れた病院に加え、臨時の患者収容施設（野外病院を含む）を設置しなければならない。また、周辺の都市の病院に患者を搬送する必要がある。特に重度の急性放射線症や熱傷を負った患者は、専門病院に搬送する必要がある。しかし、それらすべてをもってしても、数万人又はそれ以上の被災者に必要な医療を提供することは不可能である。

それゆえ、限られた医療資源（医療スタッフ、医薬品等）を最も効率的に活用するために、トリアージ（患者選別）がまず必要となる。重症がを助かる見込みの高い患者に重点を置いた治療を行い、助かる見込みの低い患者や、生死に関わるような傷害を負っていない患者には応急措置のみを提供する、といった形で患者選別が行われる。

医療以外の救援活動も困難を極める。それは他の災害と比べて被災者の人数

38 被災者の除染は、放射性物質の付いた衣服等を脱ぎ、シャワーで体を洗い流すこと等により行われるが、それに伴い汚染された衣服や水等の保管のため、巨大な施設等が必要となる。
5 対処の限界

5 対処の限界

これまで述べてきたように、核兵器攻撃によってもたらされる被害を回避することは不可能であり、行政が最善の対処措置を講じることができたとしても、被害をわずかに軽減する程度の効果しか発揮し得ない。核兵器の破壊力はあまりにも巨大であり、また放射能汚染が対処活動を著しく制約するからである。

さらに重大な困難を最後にもう一点付け加えれば、どれほど長い期間と巨額の資金を注いだとしても、核兵器攻撃災害による被災者の傷が完全に癒えることは、精神的にも肉体的にもあり得ない。爆心地ゾーンの惨禍に巻き込まれ、必死に逃げ延びるしかなかった人々の心の傷が癒えることはない。また放射線被曝などによる後障害については、そのリスクは被災者に一生つきまとう。後の世代への影響については、広島・長崎の惨禍をはじめとする幾多の核災害の経験を、人類が積み重ねてきた現在においてもなお、わかっている点が多いが、懸念されるところである。被災者に対する支援の不足や社会的な差別・偏見が、被災者の精神的・肉体的な回復を阻害し、さらに職業生活、社会生活を営む上での困難をももたらす。
第6章 結論

本部会の任務は、①核兵器攻撃による被害想定を行い、②その結果を踏まえて広島市がとるべき措置等を示すことである。

個々の検討結果については、第4章及び第5章において詳述しているが、ここでは、その結果に基づいて、果たして我が国は核兵器攻撃に対処し得るのか、し得るかどうか、どのような方策をとるべきなのか、という疑問に対する本部会としての答えを示したいと思う。

第4章の被害想定では、堅牢な建物の防護効果により、死傷者、特に死者が62年前に比べ大幅に減る可能性はあるものの、被害の拡大を防ぐために個人としてできることはほとんどないことを示した。

これを受けて第5章では、対応するには全国規模でのシステム構築が必要となるが、災害の規模が大きくなり、かつ被災後の対応のあらゆる面で放射能汚染が大きな制約となることから、行政機関等が最善の対処措置を講じたとしても、被害をわずかに軽減する程度の効果しか発揮しえないことを示した。

確かに、例えば事前警報による屋内退避が可能であれば、人的被害を大きく軽減することが可能かもしれない。あるいは爆心地から遠く離れた地域では、幸いにも避難誘導に成功するかもしれませんが、そのことで被害はいくらか軽減できるかもしれない。しかし、軽減された被害であっても、それは筆舌に難しく、また放射線による後遺症はもとより家族・地域社会等の破壊がもたらす長期的な被害に効果的に対処する術はない。

ゆえに、短期的な人的被害の軽減の可能性をもって、核兵器攻撃から市民を守ることはできると言うことには、あまりにも無理であろう。市民を守るには核兵器を使用させないようにするほかに方策はないのである。このことは、これまでも広島・長崎の被害を実地に調査した結果39や世界保健機構（WHO）の報告書40などでも繰り返し指摘されてきたことである。核兵器を使用させないための方策として「核武装論」を主張する人たちもいる。しかし、核抑止体制の中でも核兵器使用の可能性が排除できないことは第2章で示したとおりであり、それは逆に核拡散を加速させ、世界全体をさらに不安定化させることになるだろう。

したがって、本部会としては、当初の疑問に対し、核兵器攻撃から市民を守ることはできず、市民を守るのは、意図的であるか偶発的であるかを問わず、核兵器攻撃の発

39 「国民一般の防護と云うことを考えるときは特殊の場合を除いて、殆ど対策がないと云うのが正直であろう。故に完全な防護方法は原子爆弾の爆発が起こらずにすむ外に途がないことになる。」[57]
40 「(核兵器の使用がもたらす) 状況を意味のある程度に緩和することのできる医療サービスは、世界に存在しない。」[58]
生を防止する他に方策はなく、そのためには唯一、核兵器の廃絶しかないと答えざるを得ない。

この点、核兵器のない世界を達成するために、国際社会が共通して描いている道筋は概略次のようなものであろう。NPT体制を核軍縮と核不拡散の両面で強化しつつ、核保有国も含む全加盟国が第6条41で誓約している核兵器廃絶のための交渉を促進する。交渉の最終的目標は、生物兵器や化学兵器の場合と同じように核兵器禁止条約（NWC）42を実現することである。NWCのための交渉の場に関しては、ジュネーブ軍縮会議（CD）はもちろんのこと、地雷禁止条約において成功した同志国家とNGOが協力するオタワ・プロセスのような方法を含め、様々な可能性が念頭におかれている。

速度が遅すぎるという印象は拭えないが、このような道筋に沿って国際社会は少しずつ橋頭堡を築きながら前進している。平成8年（1996年）7月、国際司法裁判所（ICJ）はNPT第6条に定められた義務は、核兵器の撤廃のために「誠実に交渉する」だけではなくて「交渉を完結させる」という二重の義務であると勧告的意見を述べた43。この勧告に動かされ、平成10年（1998年）に新アジェンダ連合44が結成されたが、その強いリーダーシップの下に、平成12年（2000年）のNPT再検討会議においては会合一致の最終文書が採択された。その中で核保有国は改めて「保有核兵器の完全廃棄を達成するという明確な約束」を行った。

平成17年（2005年）NPT再検討会議はこれをさらに前進させることには失敗したが、国際社会には、この「明確な約束」の次に来るべきステップとして注目すべき提案が登場している。

スウェーデン政府がスポンサーとなって組織された「大量破壊兵器委員会」（委員長：ハナス・ブリックス。しばしばブリックス委員会と呼ばれる）が平成18年（2006年）6月に提出した報告書59は、詳細な考察ののちに核兵器に関して30項目の勧告を提言した。その後の提言において、同委員会は、核保有国は保有核兵器の完全廃棄

41 NPT第6条:「各締約国は、核軍備競争の早期の停止及び核軍備の縮小に関する効果的な措置につき、並びに厳格かつ効果的な国際管理の下における全面的かつ完全な軍備縮小に関する条約について、誠実に交渉を行うことを約束する。」

42 モデル「核兵器禁止条約」が、平成9年（1997年）11月に国連文書（A/C. 1/52/7）として各国に配布されている。さらに、それを改訂した改訂モデル「核兵器禁止条約」が、平成19年（2007年）5月、コスタリカによって2010NPT再検討会議準備委員会に作業文書（NPT/CNF. 2010/PC. I/WP. 17）として提出された。

43 ICJの勧告的意味「F 厳格かつ効果的な国際管理の下において、すべての側面での核軍縮に導く交渉を誠実に行いかつ完結させる義務が存在する。（全会一致）」

44 核兵器廃絶のために先頭に立つことを約束した国家グループで、現在、アイルランド、スウェーデン、メキシコ、ブラジル、ニュージーランド、エジプト、南アフリカの7か国よりなる。
棄を約束したのだから、核兵器に依存しない安全保障政策の立案を開始するべきであると求めた45。

また、アナン前国連事務総長は、退任前の平成18年（2006年)11月末に、核兵器に関する包括的な戦略を行った[60]。その中でアナン氏は、核軍縮と核不拡散の両分野の努力の加速が必要であると強調し、「明確な約束」を履行するために具体的なタイムテーブルを伴った実行計画を立案するよう核保有国に提案した46。

これらの呼びかけを受けるようなタイミングで、平成19年（2007年）1月4日、実際に米国の核兵器政策の責任者でもあったキッシンジャー氏か超党派の4人の元高官が、「核兵器のない世界を」という意見を米紙に投稿した[61]。そこで彼らは、「公然たる核保有国」と一歩米国のリーダーシップが重要だとするように述べている。

何よりもまず、核兵器を所持している国々の指導者たちが、核兵器をき世界を創造するという目標を、共同の事業に変えていく集中的な取組が必要である。このような共同事業は、核保有国の体質変化を生み出すことになるが、それによって、北朝鮮やイランが核武装国となることを阻止しようという現在進行中の努力に一層の重みが加えられることになるだろう。

「核兵器使用の警戒態勢の緩和」「戦術核兵器の廃棄」「包括的核実験禁止条約（CTBT）批准」「兵器用核物質の生産禁止（カットオフ）」など、このような共同事項をすべき具体的な内容についても彼らは提案した。しかし、個々の内容は、従来もしばしば指摘されてきたことであり、彼らの訴えの目は、上記の「各国の共同事業にするという強力なビジョンと行動」を訴えた点にある。

国際レベルで熟考されてきた「核兵器のない世界」を実現するための具体的取組課題については、今後は「ブリックス報告」「アナン演説」「米高官提案」という上記の3つの提案を推奨することをとめたい。しばしば言われるように、技術的方針論はすでに存在しており、必要なのかは政治意思であると言えるであろう。（上記3つの提案の関連部分の抜粋邦訳については、付録E参照のこと。）

各国政府、とりわけ核兵器保有国の核兵器廃絶への政治意思を強めるためには、市民社会からの声の高まりが不可欠である。本部会の検討結果は、核兵器攻撃の被害があよう都において深刻であることを示している。したがって、世界中の都市が核兵器廃絶世論を高める牽引役となることが必要であり、また有効であろう。世界にお

45 勧告30「核兵器の規制から非合法化へ：すべての核保有国は、核兵器なしでの安全保障に向けた計画策定に着手すべきである。それらの国々は、・・・核兵器の非合法化に備え始めるべきである」

46 その中で「核兵器を保有する全ての国に対して、核軍縮の誓約を履行する特定されたタイムテーブルを伴った具体的な実行計画を立案するよう呼びかける」と提案している。
第6章 結論

ける平和市長会議47や日本における非核宣言自治体協議会48の積極的な行動が期待されている。

核兵器廃絶に向けて、広島市が果たすべき役割は極めて大きい。広島市の一層の取組を期待し、本報告を締めくくることにしたい。

47 昭和57年（1982年）に広島・長崎両市長の呼び掛けにより発足。平成19年（2007年）11月1日現在で世界122か国・地域1,828都市が加盟）被爆75周年にあたる2020年までに核兵器の廃絶を目指すキャンペーン「2020ビジョン」を展開しており、平成18年（2006年7月）からは第2期として「Good Faith Challenge（誠実な交渉義務推進キャンペーン）」を開始し、「都市攻撃目標にする（CANT）プロジェクト」に取り組んでいる。このキャンペーンには、日本非核宣言自治体協議会（全国市長会（日本）、全米市長会）および地球人口の過半数を擁する世界的な自治体組織である「都市・自治体連合（UCLG）」（国連加盟192か国のうち127か国・地域の自治体及び地域組織の計2,500団体以上が加盟）が賛同の決議を行っている。<http://www.mayorsforpeace.org/jp/>

48 「核戦争による人類絶滅の危機から、住民一人ひとりの生命とくらしを守り、現在および将来の国民のために、世界恒久平和の実現に寄与することが自治体に課せられた重大な使命である。宣言自治体が互いに手を結びあい、この地球上から核兵器が姿を消す日まで、核兵器の廃絶と恒久平和の実現を世界的自治体に呼びかけ、その輪を広げるために努力する」との趣旨の下、昭和59年（1984年）に設立。全国の240自治体（平成19年（2007年）10月1日現在）により組織され、総会や全国大会、研修会のほか、様々な平和事業などを通じて設立の趣旨の実現に努力している。<http://www.nucfreejapan.com/>
参考文献

＜引用文献＞

1. 米国防総省「核態勢の見直し Nuclear Posture Review」2002年1月8日。（前文のみが公開されており、その邦訳が『核兵器・核実験モニター』156号（2002年2月1日、ピースデポ刊）にある。また、非公開部分の抜粋が http://www.globalsecurity. org/wmd/library/policy/dod/npr.htm にある。）
4. シラク大統領「ランディヴィショー／リール・ロンの戦略空軍・海軍を訪問したときのシラク大統領の演説」2006年1月19日。<http://www.elysee.fr/elysee/anglais/speeches_and_documents/2006/speech_by_jacques_chirac_president_of_the_french_republic_during_his_visit_to_the_strategic_forces.38447.html>（抜粋邦訳が『核兵器・核実験モニター』252号（2006年2月15日、ピースデポ刊）にある。）
5. 英国国防大臣、外務大臣「連合王国の核抑止力の未来 The Future of the United Kingdom’s Nuclear Deterrent」2006年12月。<http://www.mod.uk/NR/rdonlyres/AC00DD79-76D6-4FE3-91A1-6A5B03C092F0/DefenceWhitePaper2006_Cm6994.pdf>（要約部分の邦訳が『核兵器・核実験モニター』270号（2006年12月15日、ピースデポ刊）にある。）
7. 米国国家核安全保障管理局「核兵器複合体の将来 Future of the Nuclear Weapons Complex」2006年10月。<http://www.nnsa.doe.gov/docs/Future_of_the_Nuclear_Weapons_Complex.pdf>（邦訳が『核兵器・核実験モニター』270号（2006年12月15日、ピースデポ刊）にある。）

10. ロバート・D・グリーン『検証「核抑止論」—現代の「裸の王様」』(梅林宏道・阿部純子訳) 高文研, 2000年．

22. 「対ソ核戦争」米が非常警戒態勢」実はコンピュータ故障」『朝日新聞』（夕）1980年6月6日.

23. 「米のミサイル探知網『やたらニセ情報』1年半に147回も」『朝日新聞』（夕）1980年10月30日.

27. 鎌田七男『広島のおばあちゃん 過去・現在・未来』シフトプロジェクト, 2005年.
29. NHK広島「核・平和」プロジェクト『原爆投下10秒の衝撃』日本放送出版協会, 1999年.
32. 日本火災学会編『火災便覧』共立出版, 1997.
37. 山川大介、三根真理子他『長崎原爆被爆者における心的外傷後ストレス障害とその要因』『長崎医学会会誌』81卷, 2006年, 210〜212頁.
参考文献

38. 一ノ瀬仁志、中根秀之他「長崎原爆被爆者の心身の健康に関する調査研究」『長崎医学会雑誌』81巻, 2006年, 222〜225頁.
39. ロス・アラモス科学研究所他編『原子兵器の効果』（武谷三男他訳）科学新興社, 1951年.
40. 日本学術会議原爆弾災害調査報告書刊行委員会編『原爆弾災害調査報告（第1分冊）』日本学術振興会, 1953年.
41. 米国技術評価局編『米ソ核戦争が起こったら』（西沢信正、高木仁三郎訳）、岩波現代選書NS525, 岩波書店, 1981年.
42. 『広島および長崎における原爆弾放射線被曝線量の再評価 線量評価システム2002 DS02』財団法人放射線影響研究所, 2006年.
49. 広島市社会局原爆被害対策部『平成17年（2005年）版原爆被爆者対策事業概要』2005年.
50. アンジェロ・アクィスタ『生物・化学・核テロから身を守る方法』（榆井浩一訳）草思社, 2003年.
51. 松野元『原子力防災』創英社／三省堂書店, 2007年.
53. 森本宏『チェルノブイリ原発事故20年、日本の消防はなんで学んだか？』近代消防社, 2007年.
57. 日本学術会議原子爆弾災害調査報告書刊行委員会編『原子爆弾災害調査報告（総括編）』日本学術振興会, 1951年.
62. 「北朝鮮が新型弾道ミサイルか 先月の軍事パレードで公開」『朝日新聞』2007年5月13日.
64. 総務省統計局『地域メッシュ統計の概要』 <www.stat.go.jp/data/mesh/gaiyou.htm>

68. 中国電気通信局編『広島原爆誌』1955年.

69. 広島女学院教職員組合平和教育委員会編『夏雲:広島女学院原爆被災誌』広島女学院教職員組合, 2001年.

71. 安田学園編『安田学園五十年史』安田学園, 1965年.

72. 広島駅広島駅七十年のあゆみ』1965年.

73. 崇徳学園百二十年史編纂委員会編『崇徳学園百二十年史』崇徳学園, 1995年.

74. 広島ガス株式会社『広島ガス60年史』1971年.

75. 広島市『ヒロシマの被爆建造物は語る』1996年.

77. サミュエル・グラストン編『原子力ハンドブック第6 爆弾編』（武谷三男・服部学訳）商工出版社, 1958年.

＜その他参考文献等＞

82. 青木芳朗・前川和彦編『緊急ひばく医療テキスト』医療科学社, 2004年.
83. 安斎育郎『図解雑学 放射線と放射能』ナツメ社, 2007年.
84. 小都元『核兵器事典』新紀元社, 2005年.
85. 核戦争防止国際医師会編『LAST AID 核戦争と医学』（市丸道人他訳）別冊サイエンス62, 日経サイエンス社, 1983年.
86. 高田純『東京に核兵器テロ』講談社, 2004年.
87. 高田純『核爆発災害―そのとき何が起こるのか』中公新書1895, 中公新書, 2007年.
88. 財団法人日本原子力文化振興財団「原子力図書館げんしろう」<http://www.nucpal.gr.jp/genshiro/>
89. 庄野直美、飯島宗一『核放射線と原爆症』日本放送出版協会, 1981年.
90. ジョセフ・ロートブラット『核戦争と放射線』（小野周監訳、安斎育郎他訳）東京大学出版会, 1982年.
91. 広島市・長崎市原爆災害誌編集委員会編『広島・長崎の原爆災害』岩波書店, 1979年.
92. L. W. マクノード『核兵器』（河島信樹訳）地人書館, 1985年.
93. 文部科学省「緊急被ばく医療REMnet」<http://www.remnet.jp/>
94. 山田克哉『核兵器のしくみ』講談社現代新書1700, 講談社, 2004年.
付録
付録A 核兵器攻撃被害想定専門部会委員名簿等

1 委員名簿

<table>
<thead>
<tr>
<th>氏名</th>
<th>現職</th>
<th>専門分野</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>安斎育郎</td>
<td>立命館大学国際平和ミュージアム館長</td>
<td>原子力工学</td>
<td></td>
</tr>
<tr>
<td>梅林宏道</td>
<td>NPO法人ピースデポ代表</td>
<td>核兵器問題</td>
<td></td>
</tr>
<tr>
<td>片岡勝子</td>
<td>核戦争防止国際医師会議副会長・日本支部事務総長</td>
<td>医学</td>
<td></td>
</tr>
<tr>
<td>鎌田七男</td>
<td>阪広島原爆被爆者援護事業団理事長</td>
<td>医学</td>
<td></td>
</tr>
<tr>
<td>坪井直</td>
<td>広島県原爆被害者団体協議会理事長</td>
<td>被爆体験</td>
<td></td>
</tr>
<tr>
<td>葉佐井博巳</td>
<td>広島大学名誉教授</td>
<td>物理学</td>
<td>部会長</td>
</tr>
<tr>
<td>最上敏樹</td>
<td>国際基督教大学教授、同大学平和研究所長</td>
<td>国際法</td>
<td>平和学</td>
</tr>
<tr>
<td>吉岡斎</td>
<td>九州大学大学院比較文化研究院教授</td>
<td>科学史</td>
<td>科学政策</td>
</tr>
</tbody>
</table>
付録A 核兵器攻撃被害想定専門部会委員名簿等

2 検討状況
(1) 第1回専門部会
① 日 時
平成18年（2006年）10月17日（火）午前10時から午前11時30分
② 場 所
広島市役所本庁舎14階第7会議室
③ 出 席
葉佐井（部会長）、安斎、片岡、鎌田、吉岡
④ 内 容
専門部会の運営、被害想定の前提条件及び今後の作業の進め方について
ほか

(2) 第2回専門部会
① 日 時
平成18年（2006年）11月27日（月）午後1時30分から午後4時
② 場 所
広島市役所14階第7会議室
③ 出 席
葉佐井（部会長）、安斎、梅林、片岡、鎌田、坪井、吉岡
④ 内 容
放射線量の推計、広島に投下された原子爆弾と同威力の核兵器（16キロト
ン、高度600m）による被害等、爆風及び熱線の威力の計算等、核災害への
対処及び各国の核兵器使用政策の現状について

(3) 第3回専門部会
① 日 時
平成19年（2007年）1月22日（月）午後1時30分から午後3時30分
② 場 所
広島市公文書館会議室（大手町平和ビル8階）
③ 出 席
葉佐井（部会長）、安斎、梅林、片岡、鎌田、坪井、
④ 内 容
核放射線、爆風、熱線等による被害想定作業の状況及び専門部会報告の
構成（たたき台）について
第4回専門部会

① 日 時
平成19年（2007年）10月31日（水）午前10時から午前11時30分

② 場 所
広島市役所14階第7会議室

③ 出 席
葉佐井（部会長）、梅林、片岡、鎌田、坪井、吉岡

④ 内 容
報告書のとりまとめについて

※ この間、4回のワーキング会議を開催
付録

付録B 核兵器の脅威と現状にかかわる諸データ

表B-1 地球上の核弾頭一国別詳細（出典：「核兵器・核実験モニター」286-7号（平成19年（2007年）9月1日）発行：ピースデポ）

1 米国（計 9,962）

<table>
<thead>
<tr>
<th>業物兵器の名称</th>
<th>爆発威力キロトン</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>戦略核（小計 5,236）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●ICBM（大陸間弾道ミサイル）（小計 1,050）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミニットマンIII</td>
<td>1,050</td>
<td></td>
</tr>
<tr>
<td>Mk-12型（弾頭：W62）</td>
<td>170</td>
<td>300</td>
</tr>
<tr>
<td>Mk-12A型（弾頭：W78）</td>
<td>335</td>
<td>750</td>
</tr>
<tr>
<td>●SLBM²（潜水艦発射弾道ミサイル）（小計 2,016）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トライデントII D5</td>
<td>2,016</td>
<td></td>
</tr>
<tr>
<td>Mk-4型（弾頭：W76）</td>
<td>100</td>
<td>1,632</td>
</tr>
<tr>
<td>Mk-5型（弾頭：W88）</td>
<td>455</td>
<td>384</td>
</tr>
<tr>
<td>●爆撃機搭載核兵器³（小計 1,955）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核爆弾B61-7</td>
<td>可変</td>
<td>1-360</td>
</tr>
<tr>
<td>B61-11</td>
<td>5</td>
<td>555</td>
</tr>
<tr>
<td>B83-1</td>
<td>可変</td>
<td>1,200</td>
</tr>
<tr>
<td>ALCM（空中発射巡航ミサイル）（弾頭：W80-1）</td>
<td>5-150</td>
<td>1,000</td>
</tr>
<tr>
<td>ACM（新型巡航ミサイル）（弾頭：W80-1）</td>
<td>5-150</td>
<td>400</td>
</tr>
<tr>
<td>●戦略核予備（小計 215）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非戦略核（小計 500）⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●SLCM（海洋発射巡航ミサイル）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トマホーク（弾頭：W80-0）</td>
<td>5-150</td>
<td>100</td>
</tr>
<tr>
<td>●核爆弾B61-3,-4,-10</td>
<td>0.3-170</td>
<td>400</td>
</tr>
</tbody>
</table>

迅速対応戦力¹⁵及び不活性貯蔵¹²（小計 4,226）¹³
付録B 核兵器の脅威と現状にかかわる諸データ

2 ロシア（計 15,000）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力（キロトン）</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>戦略核（小計 3,339）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●ICBM（大陸間弾道ミサイル）（小計 1,843）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-18 M4, M5, M6（サタン）</td>
<td>550-750</td>
<td>800¹⁴</td>
</tr>
<tr>
<td>SS-19 M3（スチレトウ）</td>
<td>550-750</td>
<td>756¹⁵</td>
</tr>
<tr>
<td>SS-25（シックル）（トーポリ）</td>
<td>550</td>
<td>242¹⁶</td>
</tr>
<tr>
<td>SS-27（トーポリ M）</td>
<td>550</td>
<td>42¹⁷</td>
</tr>
<tr>
<td>SS-27A（トーポリ M1）</td>
<td>550²</td>
<td>3¹⁸</td>
</tr>
<tr>
<td>●SLBM（潜水艦発射弾道ミサイル）（小計 624）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-N-18 M1（スチングレイ）</td>
<td>200</td>
<td>240¹⁹</td>
</tr>
<tr>
<td>SS-N-23（スキャフ）</td>
<td>100</td>
<td>384²⁰</td>
</tr>
<tr>
<td>●爆撃機搭載核兵器（小計 872）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核爆弾</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALCM（空中発射巡航ミサイル）（弾頭 AS15A，B）</td>
<td>250</td>
<td>872²¹</td>
</tr>
<tr>
<td>SRAM（短距離攻撃ミサイル）（弾頭 AS16）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非戦略核（小計 2,330）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●ABM（対弾道ミサイル）／SAM（地対空ミサイル）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（小計 700）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51T6／53T6（ユーゴン／ガゼル）</td>
<td>1,000/10</td>
<td>100</td>
</tr>
<tr>
<td>SA-10（グランブル）</td>
<td>Low</td>
<td>600</td>
</tr>
<tr>
<td>●空軍航空機（小計 975）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核爆弾／ASM（空対地ミサイル）（AS-4（キッチン））</td>
<td></td>
<td></td>
</tr>
<tr>
<td>／SRAM（短距離攻撃ミサイル）（AS16）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●海軍用戦術核（小計 655²²）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核爆弾</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASM（空対地ミサイル） AS-4（キッチン）</td>
<td>1,000</td>
<td>190²⁴</td>
</tr>
<tr>
<td>SLCM（海洋発射巡航ミサイル）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-N-9（サイレン）</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>SS-N-12（サンドボックス）</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>SS-N-19（シップレック）</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>SS-N-21（サンプソン）</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>SS-N-22（サンバーン）</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>対潜核兵器</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロケット爆雷 SS-N-15（スターフィッシュ）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>対潜ミサイル SS-N-16（スタリオン）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他核魚雷、爆雷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>迅速対応戦力及び不活性貯蔵（計 9,330）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※兵器の名称は、NATO（北大西洋条約機構）命名のもの。

81
3 中国（計 200）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力（キロトン）</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>戦略核（小計 130）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●ICBM（大陸間弾道ミサイル）／IRBM（中距離弾道ミサイル）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（小計 79）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ドンファン（東風）-3A（NATO 名：CSS-2）</td>
<td>3,300</td>
<td>16</td>
</tr>
<tr>
<td>ドンファン（東風）-4（NATO 名：CSS-3）</td>
<td>3,300</td>
<td>22</td>
</tr>
<tr>
<td>ドンファン（東風）-5A（NATO 名：CSS-4）</td>
<td>4,000-5,000</td>
<td>20</td>
</tr>
<tr>
<td>ドンファン（東風）-21, 21A（21A の NATO 名：CSS-5）</td>
<td>200-300</td>
<td>21</td>
</tr>
<tr>
<td>ドンファン（東風）-31</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>ドンファン（東風）-31A</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>●SLBM（潜水艦発射弾道ミサイル）（小計 12）</td>
<td>200-300</td>
<td>12</td>
</tr>
<tr>
<td>ジュイラン（巨浪）-1（NATO 名：CSS-N-3）</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>ジュイラン（巨浪）-2</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>●爆撃機搭載核兵器（小計 40）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核爆弾</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

予備貯蔵（小計 70）

4 フランス（計 350）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力（キロトン）</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>戦略核（小計 338）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●SLBM（潜水艦発射弾道ミサイル）（小計 288）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSBS（艦対地戦略弾道ミサイル） M45（弾頭：TN75）</td>
<td>100</td>
<td>288</td>
</tr>
<tr>
<td>●爆撃機搭載核兵器（小計 50）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASMP（空対地中距離ミサイル）（弾頭：TN81）</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>非戦略核（小計 10）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●空母配備航空機搭載核兵器（小計 10）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASMP（空対地中距離ミサイル）（弾頭：TN81）</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>
付録B 核兵器の脅威と現状にかかわる諸データ

5 英国（計 200）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力キロトン</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>戦略核（小計 160）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●SLBM（潜水艦発射弾道ミサイル）^{37}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トライデントII D5</td>
<td>100</td>
<td>160^{38}</td>
</tr>
<tr>
<td>予備貯蔵（小計 40）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 インド（計 50-60）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力キロトン</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>組み立てられた核弾頭</td>
<td>5-25^{39}</td>
<td>50-60</td>
</tr>
<tr>
<td>運搬手段^{40}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●航空機^{11}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●短・中距離弾道ミサイル^{42}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 パキスタン（計 60）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力キロトン</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>組み立てられた核弾頭</td>
<td>4-12^{43}</td>
<td>60</td>
</tr>
<tr>
<td>運搬手段</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●航空機^{11}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●短・中距離弾道ミサイル^{45}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●巡航ミサイル^{46}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 イスラエル（計 100-300）

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力キロトン</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>流布された推定^{47}</td>
<td></td>
<td>100-300</td>
</tr>
<tr>
<td>運搬手段</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●航空機^{18}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●中距離弾道ミサイル^{49}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●砲弾・地雷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
付録

9 北朝鮮(DPRK)

<table>
<thead>
<tr>
<th>核兵器の名称</th>
<th>爆発威力(キロトン)</th>
<th>核弾頭数</th>
</tr>
</thead>
<tbody>
<tr>
<td>弾頭化・兵器化の確認なし</td>
<td><1.50</td>
<td>?</td>
</tr>
<tr>
<td>運搬手段</td>
<td></td>
<td></td>
</tr>
<tr>
<td>●中距離弾道ミサイル51'52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表B－2 核脅迫事件の例（参考文献[17]より作成）

<table>
<thead>
<tr>
<th>年</th>
<th>事件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946 年</td>
<td>トルーマン米大統領、イラン北部についてソ連を威嚇
トルーマン米大統領、ユーロスラビア上空での米機撃墜の後、戦略爆撃機を送りユーロスラビアを核脅迫</td>
</tr>
<tr>
<td>1948 年</td>
<td>トルーマン米大統領、ベルリン封鎖に関してソ連を核脅迫</td>
</tr>
<tr>
<td>1950 年</td>
<td>トルーマン米大統領、米海兵隊が朝鮮の長津湖で包囲され、中国を核脅迫</td>
</tr>
<tr>
<td>1951 年</td>
<td>トルーマン米大統領、中国軍の相当数の新たな戦力が参加した場合、満州を核兵器攻撃することを求める軍の要請を承認</td>
</tr>
<tr>
<td>1953 年</td>
<td>アイゼンハーマー米大統領、朝鮮戦争の終結条件について中国を核脅迫</td>
</tr>
<tr>
<td>1954 年</td>
<td>ダレス米国務長官、ベトナムのディエンピエンフーの包囲を破るためフランスに3発の戦略核兵器の提供を申し入れ</td>
</tr>
<tr>
<td>1954 年</td>
<td>アイゼンハーマー米大統領、CIA が指揮したグアテマラのクーデターを支援するため、核武装した戦略爆撃機を派遣</td>
</tr>
<tr>
<td>1956 年</td>
<td>ブルガーニ－ソ連首相、英仏のエジプト侵攻に対して両国に撤退を求
核脅迫
アイゼンハーマー米大統領、英仏にエジプトからの撤退を要求する一方、ソ連を核脅迫</td>
</tr>
<tr>
<td>1958 年</td>
<td>アイゼンハーマー米大統領、革命がクウェートに及ぶのを阻止するため、イラクに対する核兵器使用を準備するよう統合参謀本部に指示</td>
</tr>
<tr>
<td>1958 年</td>
<td>アイゼンハーマー米大統領、中国が金門島に侵攻した場合、核兵器使用準備に入るよう統合参謀本部に指示</td>
</tr>
<tr>
<td>1961 年</td>
<td>ケネディ米大統領、ベルリン危機でソ連を核脅迫</td>
</tr>
<tr>
<td>1962 年</td>
<td>キューバ・ミサイル危機で米国が核兵器攻撃を想定。ソ連も海軍将校に戦術核発射を許可。カストロ・キューバ議長が対米先制核兵器攻撃をソ連に強く要求</td>
</tr>
<tr>
<td>1967 年</td>
<td>ジョンソン米大統領、中東戦争でソ連を核脅迫
ジョンソン米大統領、ケサン包囲を破るため核兵器による威嚇</td>
</tr>
<tr>
<td>1969 年</td>
<td>ブレジネフ＝ソ連書記長、国境紛争で中国を核脅迫
ニクソン米大統領、ベトナムに対し核兵器の使用を仄めかして脅迫</td>
</tr>
<tr>
<td>1970 年</td>
<td>ニクソン米大統領、ヨルダン内戦で、核戦争の用意ありとの合図送る</td>
</tr>
<tr>
<td>1973 年</td>
<td>イスラエル政府、第4次中東戦争に際して核脅迫
ニクソン米大統領、グエン・バン・チュー南ベトナム大統領に、北ベトナムがバリ平和条約の条項に違反した場合、核兵器攻撃などで援護することを約束</td>
</tr>
<tr>
<td>年</td>
<td>事件</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1975年</td>
<td>シュレジンジャー米国防長官、米国のベトナム戦争敗北後、もしも北朝鮮が韓国を攻撃すれば核報復で応じると北朝鮮を脅迫</td>
</tr>
<tr>
<td>1980年</td>
<td>「米国の死活的利害にかかわる中東を守るためには（核兵器を含む）武力行使も辞さない」とするカーター（米大統領）・ドクトリンを発表</td>
</tr>
<tr>
<td>1981年</td>
<td>レーガン米大統領、カーター・ドクトリンを確認</td>
</tr>
<tr>
<td>1982年</td>
<td>サッチャー英首相、フォークランド紛争の際、プエボスアリレスを消滅させると核脅迫</td>
</tr>
<tr>
<td>1990-91年</td>
<td>ブッシュ米大統領、湾岸戦争に際し、イラクを核脅迫</td>
</tr>
<tr>
<td>1993年</td>
<td>クリントン米大統領、北朝鮮を威嚇</td>
</tr>
<tr>
<td>1994年</td>
<td>クリントン米大統領、北朝鮮と対決</td>
</tr>
<tr>
<td>1996年</td>
<td>中国、台湾を巡る衝突で「ロサンゼルス」を核脅迫</td>
</tr>
<tr>
<td></td>
<td>クリントン米大統領、中国の核脅迫に対し2隻の核航空母艦を台湾海峡に派遣、中国政府に恐怖のメッセージ</td>
</tr>
<tr>
<td></td>
<td>クリントン米大統領、地下化学兵器製造工場の完成を阻止するためリビアを核脅迫</td>
</tr>
<tr>
<td>1998年</td>
<td>クリントン米大統領、核兵器攻撃でイラクを核脅迫</td>
</tr>
<tr>
<td>1999年</td>
<td>インドとパキスタン、カーギル戦争で相互に核脅迫を行い、核兵器攻撃を準備</td>
</tr>
<tr>
<td>2001年</td>
<td>米軍、9・11テロ攻撃の直後、米軍をデフコン（防空準備態勢）警戒下に置く</td>
</tr>
<tr>
<td></td>
<td>ラムズフェルド米国防長官、オサマ・ビン・ラディンが隠れている可能性のあるアフガニスタン地下街に対し、戦術核の使用を除外することを拒否</td>
</tr>
<tr>
<td>2002年</td>
<td>ブッシュ米大統領、イラクによる化学・生物学兵器の使用に対し、核兵器攻撃で反撃することを暗示して核脅迫</td>
</tr>
<tr>
<td></td>
<td>カシミールでの自爆テロを受けたインドの軍事的脅威に対抗して、パキスタンがインドを威嚇</td>
</tr>
<tr>
<td>2003年</td>
<td>米国、北朝鮮に対して動員と暗黙の核脅迫</td>
</tr>
<tr>
<td>2006年</td>
<td>シラク仏大統領、フランスに対してテロを行う国に先制核兵器攻撃の核脅迫</td>
</tr>
<tr>
<td>2006年</td>
<td>米国が暗にイランの核施設を「バンカーバスター」核で爆撃すると核脅迫</td>
</tr>
</tbody>
</table>

1 作戦配備のもののみ。
2 オハイオ級戦略原潜14隻に搭載。ミサイル数は336基（14×24）。作戦配備のもののみ。
付録B 核兵器の脅威と現状にかかわる諸データ

3 ストラトフォートレス B-52H (94 機のうちの 56 機)、スピリット B-2A (21 機のうちの 16 機)、計 72 機が任務 (核・非核両用) についている。B-2A は爆撃のみ。警戒態勢は低い。
4 地中貫通型 (1997 年 11 月に導入)。貫通は 6m。B-2A にのみ搭載。
5 単弾頭が 150 基、3MIRV (MIRV: 多弾頭個別誘導再突入体) が 50 基。W62 は 2009 年に退役予定。
6 2～3MIRV×300 基。
7 14 隻×24 発射管×6MIRV。
8 この他に約 790 個が迅速対応戦力／不活性貯蔵。
9 ワシントン州バンゴーに予備を含めて合計 320 個貯蔵。
10 迅速対応戦力も含めて 350 個が NATO 軍用としてヨーロッパ 6 国の 7 か所の空軍基地に配備。その他に米国内では、ファイティング・ファルコン F16C ／D、およびストライク・イーグル F15E に搭載。
11 作戦配備からは外されたが、活性状態に置かれ迅速に作戦配備に復活できる弾頭。
12 退役した核弾頭で、時間が経過すると劣化するトリチウムや電池を除いて貯蔵している弾頭。将来、再使用の可能性は残す。解体待ちのものも含まれる。
13 トマホーク 200 発、B61 (-3, -4, -10) 600 発、退役した W76 ドライデント弾頭 1,300 発の多くが迅速対応戦力となっている。
14 10MIRV×80 基、STARTII (第二次戦略兵器削減条約) が無効になり保持。しかし削減が続く。液体燃料。
15 6MIRV×126 基。削減する計画。液体燃料。
16 単弾頭。ロシア名トポリリ。道路移動型で固体燃料。2006 年 8 月 3 日に発射テスト。
17 単弾頭。ロシア名トポリリ M 軌道を変更できる弾頭もある。
18 トポリリ M の移動型。新しいカモフラージュ。
19 デルタ III 級戦略原潜に搭載。5 隻×16 発射管×3MIRV。全て北方艦隊に所属。
20 デルタ IV 級戦略原潜に搭載。6 隻×16 発射管×4MIRV。2 隻が北方艦隊、4 隻が太平洋艦隊に所属。
21 ベア H6 (Tu-95MS6) 32 機、ベア H16 (Tu-95MS16) 32 機、ブラックジャック (Tu-160) 14 機に搭載。ベア H6 は 1 機あたり AS15A 又は核爆弾を 6 個 (計 192 個)、ベア H16 は 1 機あたり AS15A 又は核爆弾を 16 個 (計 512 個)、ブラックジャックは AS15B 又は AS16、または核爆弾を 12 個 (計 168 個) 搭載する。
22 内訳は昨年までのデータによるヒースデブの推定。
23 バックファイヤー (Tu-22M) やジェッサー (Su-24) 490 機に搭載。各 2 個と推定。
24 バックファイヤー (Tu-22M) 45 機、ジェッサー (Su-24) 50 機に搭載。各 2 個。
25 東風-5A (射程距離 13,000km)、東風-31 (射程 8,000km)、東風-31A (射程 12,000km) は ICBM。他は IRBM。全て単弾頭。
26 米大津に届く現有唯一の ICBM。2005 年に 30 発に増えると米国防総省は分析していたが不変。
27 移動式、固体燃料。1999 年 8 月 2 日に初めて発射実験。2006 年 9 月 4 日に 6 回目の実験。MIRV か否かについて確認はない。推定射程が 7,250km。で新世代原潜 (094 型) に搭載する計画進行中。東風 31 の変型と考えられるが、単弾頭らしい。
28 戦略原潜シリア (夏) 級 (中国名: 大慶魚) に搭載。12 発射管。2 隻目の報道があったが、現在は不明。
29 ホン (準) -6 (NATO 表示: B-6) 100-120 機のうちの 20 機。キャン (強) -5 のうちの 20 機程度が核任務を持つと推定。
30 アルチル整備検査のために確保されている活性状態にあるスペア。
31 ランフレキシブル戦略原潜 1 隻とル・トリオンフラン戦略原潜 3 隻に搭載。
付録

33 2006年11月9日、新型ミサイルM51の初めての発射実験に成功。
34 3連×16発射管×6MIRV。
35 ミラージュ2000N（60機,3飛行隊）に搭載。1機あたり1弾頭。弾頭は50と見積もられる。
36 シュペル・エタンダール24機（2飛行隊）に搭載。通常任務の航空機もある。唯一の空母ドーゴール（原子力）に配備。
37 バンガード級戦略原潜4隻に搭載。4隻目ペンジャースは2001年2月にパトロール任務についた。常時1隻のみパトロール。
38 弾頭は、米国のW76に類似だが米国産。4連×16発射管×3MIRVで計算すると192個。実際には、2-6発射管は単弾頭と推定され、平均して1隻あたり40弾頭と推定される。40×4隻＝160。別の推定として、2006年12月発表の英政府「ファクトシート」は、パトロール中の原潜は最大48個の弾頭を持つと記述。3隻分として144個。4隻分として192個。実際にはこの中に考えられる。
39 1998年5月の核実験の地震波からの推定値。インドは、最高43キロトンの爆発を主張している。
40 いずれも通常任務を持つ。
41 ミラージュ2000H（パジュラ）48機、ジャガーIS/IB（シャムシャー）70機のいくつかが、核任務を持つと推定される。
42 プルトビ1（射程150km）が配備で、アグニ1（射程700km）とアグニ2（射程2,000km）の配備状況ははっきりしない。アグニ3（射程3,000km）、ダヌシュ（射程350km、プルトビ2の海軍版）及びプルトビ3（射程300km、サガリカ）を開発中。
43 1998年5月の核実験における地震波からの推定値。
44 米国製F16A/B（ファイティング・ファルコン）32機のいくつかが核任務を持つと推定される。
45 ガズナビ（ハトフ3、射程400km）、シャヒーン1（ハトフ4、射程450km）、ガウリ（ハトフ5、射程1,300-1,500km）の配備が確認されている。シャヒーン2（ハトフ6、2,000km）を開発中。
46 巡航ミサイル・バーバー（ハトフ7、500km）を開発中。
47 1979年9月22日、南アフリカ近海の南インド洋にあるか上空で、秘密裏に核実験が行われたとの説がある。クリスチャンセンらは弾頭数を200と推定。
48 米国製F16A/B/C/D（ファイティング・ファルコン）260機、同F15E（ストライク・イーグル、イスラエルはF15I・ラームと呼ぶ。）25機の一部が核任務を持つと推定される。
49 ジェリコ1（射程1,200km）、同2（射程1,800km）が配備されている。
50 2006年10月9日の核実験における地震波からの推定値。プルトニウム保有量については40〜50kg（核弾頭6〜8個分）と推定されている（2006年11月現在）。
51 ハドン（射程1,480km）は核搭載可能。200基配備。テドロン1（射程2,300km）、テドロン2（射程6,200km）は未配備。テドロン2には3段式のものも開発されている。推定射程15,000km。
52 米国防総省は、単段式ムスタン（射程5,000km）が存在していると分析している[62]。
付録C 死傷者推計の方法について

「第4章 核兵器攻撃による被害想定」において提示した死傷者数の試算値については、①放射線、爆風、熱線のそれぞれについて、爆心地からの距離に応じた強さを試算し、次に②その影響が及ぶ範囲内の昼夜間人口を試算するとともに、③その昼夜間人口を「屋外一開放」「屋外一遮蔽」「屋内一木造」「屋内一非木造」の4つ状態に分け、④この昼間人口に、62年前の広島原爆の被害の状況等を加味して設定した死傷率等を乗じて得たものである。ここでは、その具体的な方法について説明する。

1 放射線、爆風及び熱線の爆心地からの距離に応じた強さの試算（試算結果については付録D参照）

（1）放射線

初期放射線については、想定した4つのケースのうち、62年前と同じ16キロトンの核兵器が空中で爆発した場合については、DS02[42]の値を用いた。その他のケースについては、参考文献[31]に示されている方法により試算した。

また、残留放射線の影響が特に大きい地表爆発の2つのケースについては、DS02の長崎原爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を浴びて放射化する地上の物質からの残留放射線を独自に試算した。

（2）爆風及び熱線

参考文献[31]には爆風及び熱線についても大まかな試算方法が示されているが、参考文献[63]には米国政府機関との契約に基づき作成されたとされる1984年版のコンピュータ・プログラムのヘルプファイルから得た計算式が紹介されている。この両者に基づいて求めた値を比較した結果、両者の値はおおむね一致することから、ここでは後者の方法で試算を行った。

2 範囲別昼間人口の試算

範囲別昼夜間人口については、「平成12年国勢調査と平成13年事業所・企業統計調査等のリンクによる地域メッシュ統計」（総務省統計局）を用い、1メガトンの場合は基準メッシュ（第三次メッシュ、約1km）、その他の場合は基準メッシュの1/2の地域メッシュ（縦横それぞれ1/2）を単位として、次式により試算した。

\[P = P_1 + (S - S_1) \times \frac{P_2}{S_2} \]

ここで半径 \(R \) の円内の人口を \(P \)，面積を \(S \)，半径 \(R \) の円に完全に内包されるメッシュの合計人口を \(P_1 \)，合計面積を \(S_1 \)，半径 \(R \) の円とその一部が重なるメッシュの合
計人口を \(P_2 \)、合計面積を \(S_2 \) とし、基準メッシュの面積を1.063km²[64]とした。

3 昼間人口の分類

死傷者数の試算に当たり、初期放射線や熱線に対する遮蔽の有無等を考慮するため、「地震被害想定支援マニュアル」（内閣府防災担当）等を参考に、被災地域の昼間人口を以下的方法により上記の4区分に分類した。

![昼間人口の分類の図](image)

図C－1 昼間人口の分類

なお、ここでは他の自治体が実施した地震被害想定を参考に平日昼間の屋内滞留率を90%、在宅率を35%、「平成15年住宅・土地統計調査」から木造住宅比率を60.46%とするとともに、住宅以外の建物についてはすべて非木造建物と見なし

1 『地震被害想定支援マニュアル』 [URL: www.bousai.go.jp/manual/index.htm] の他、宮城県、静岡県、鳥取県、広島県、徳島県の地震被害想定の屋内滞留率や在宅率等を参考とした。
た。また、屋外で建物等の陰に入り、初期放射線や熱線から遮蔽される割合（遮蔽率）は、建物の高層化によって、かなりの割合が建物の陰に入ると考え、75%に設定した。

4 隣近・開放・屋外・遮蔽・屋内・木造・屋内・非木造別急性期死傷率の設定

想定する4つのケースそれぞれにおいて、どの程度の死傷者が発生するかを試算するためには、3で求めた4つの区分ごとに死傷率を設定する。

本来、放射線、爆風及び熱線といった死傷要因の重なり具合、核兵器の威力と爆発高度によって異なることから、この死傷率は、放射線、爆風、熱線といった要因ごとに設定され、地点ごとにその複合的な影響を考慮されるべきものである。

しかしながら、複合的な影響の所産である過去のデータ等からこれらを導き出すことは事実上困難であるため、ここでは、複合的な影響も含む大雑把な急性期の死傷率を62年前の広島原爆の被害（16キロトンの核兵器の空中爆発）に関する断片的なデータから設定し、威力・爆発高度の異なる他のケースへの適用を試みた。

なお、死傷者数の試算に当たっては、過去の被害想定事例等で用いられている試算方法との比較を行った。

(1) 共通条件

① 放射線の急性期の影響は、別に定めのない限り、次のとおりとする。

<table>
<thead>
<tr>
<th>表C-1 放射線の急性期の影響に関する基準（全身被曝）</th>
</tr>
</thead>
<tbody>
<tr>
<td>被曝線量</td>
</tr>
<tr>
<td>7Sv 以上</td>
</tr>
<tr>
<td>4Sv 以上 7Sv 未満</td>
</tr>
<tr>
<td>2Sv 以上 4Sv 未満</td>
</tr>
<tr>
<td>1Sv 以上 2Sv 未満</td>
</tr>
<tr>
<td>0.1Sv以上 1Sv未満</td>
</tr>
</tbody>
</table>

② 初期放射線の遮蔽を考慮する場合の考え方を次のとおりとする。

ア 木造建物の平均階数を2階、非木造建物の平均階数を5階とし、また建物が100mの距離の間に4棟建っていると想定する。

イ これを基に、16キロトン及び1メガトンの空中爆発については、上方からの放射に対する遮蔽として、

・ 非木造建物の屋内では3階に人がいるものとし、その遮蔽効果は20cm
付録

×3=60cm厚のコンクリート相当とする。
・木造建物の屋内では1階に人がいるものとして遮蔽効果を考える。
・屋外で建物の陰に人がいる場合の遮蔽効果は20cm×5=100cm厚のコンクリート相当とする。
ウ また、1キロトン及び16キロトンの地表爆発については、屋内に人がいる場合及び屋外で建物の陰に人がいる場合とも、水平方向の放射に対する遮蔽として、その遮蔽効果は100m当たり20cm×2×4棟＝160cm厚のコンクリート相当とする。

表C-2 初期放射線の遮蔽係数（透過率）

<table>
<thead>
<tr>
<th>コンクリートの厚さ</th>
<th>中性子</th>
<th></th>
<th>ガンマ線</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>原爆</td>
<td>水爆</td>
<td>原爆</td>
<td>水爆</td>
</tr>
<tr>
<td>60cm</td>
<td>0.2</td>
<td>0.01</td>
<td>0.02</td>
<td>同左</td>
</tr>
<tr>
<td>100cm</td>
<td>0.1</td>
<td>0.001</td>
<td>0.005</td>
<td>同左</td>
</tr>
<tr>
<td>160cm</td>
<td>0.02</td>
<td>-</td>
<td>0.0015</td>
<td>同左</td>
</tr>
<tr>
<td>（木造建物）</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>同左</td>
</tr>
</tbody>
</table>

③ 後障害（白血病・がんの過剰発症数）は以下のとおりとする。

表C-3 後障害の発症基準（白血病・がんの過剰発症数）

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>白血病</th>
<th>白血病以外のがん</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15Sv</td>
<td>1.1/1,000人</td>
<td>10人/1,000人</td>
</tr>
<tr>
<td>1.05Sv</td>
<td>11/1,000人</td>
<td>100人/1,000人</td>
</tr>
<tr>
<td>3.05Sv</td>
<td>33/1,000人</td>
<td>300人/1,000人</td>
</tr>
</tbody>
</table>

④ 熱線を肌に直接浴びた場合に発症する熱傷は以下のとおりとする[31]。

表C-4 熱傷の発症基準

<table>
<thead>
<tr>
<th>熱傷の深度</th>
<th>受熱密度 cal/cm² (MJ/m²)</th>
<th>1キロトン</th>
<th>16キロトン</th>
<th>1メガトン</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅲ度</td>
<td>6.2(0.26)</td>
<td>7.2(0.30)</td>
<td>10.0(0.42)</td>
<td></td>
</tr>
<tr>
<td>Ⅱ度</td>
<td>4.0(0.17)</td>
<td>4.5(0.19)</td>
<td>6.2(0.26)</td>
<td></td>
</tr>
</tbody>
</table>

※Ⅰ度の熱傷は皮膚には見なされない。
※幅のある数値であると考えられるが、単純化のため、ここではしきい値と見なす。
付録C 死傷者推計の方法について

⑤ 人間の被爆（後障害を含む）が発生する範囲は、放射線が0.01Sv以上となる
範囲、熱線により2度以上の熱傷を負う範囲及び爆風の過圧が1psi
（6.9kPa）以上となる範囲と仮定する。

(2) 急性期の死傷率設定のための広島原爆での基本データ等

表C－5 広島原爆における推計死傷者数（出典:参考文献[65]）

<table>
<thead>
<tr>
<th>爆心地からの距離</th>
<th>実数</th>
<th>動物</th>
<th>死亡</th>
<th>重傷</th>
<th>軽傷</th>
<th>生死不明</th>
<th>無傷</th>
<th>計</th>
<th>動物</th>
<th>死亡不明</th>
<th>負傷</th>
<th>無傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td></td>
</tr>
<tr>
<td>≤0.5</td>
<td>19,329</td>
<td>478</td>
<td>338</td>
<td>593</td>
<td>924</td>
<td>21,662</td>
<td>92.0</td>
<td>3.8</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5–1.0</td>
<td>42,271</td>
<td>3,046</td>
<td>1,919</td>
<td>1,366</td>
<td>4,434</td>
<td>53,036</td>
<td>82.3</td>
<td>9.4</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0–1.5</td>
<td>37,689</td>
<td>7,732</td>
<td>9,522</td>
<td>1,188</td>
<td>9,140</td>
<td>65,271</td>
<td>59.6</td>
<td>26.4</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5–2.0</td>
<td>13,422</td>
<td>7,627</td>
<td>11,516</td>
<td>227</td>
<td>11,698</td>
<td>44,490</td>
<td>30.7</td>
<td>43.0</td>
<td>26.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0–2.5</td>
<td>4,513</td>
<td>7,830</td>
<td>14,149</td>
<td>98</td>
<td>26,096</td>
<td>52,686</td>
<td>8.8</td>
<td>41.7</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5–3.0</td>
<td>1,139</td>
<td>2,923</td>
<td>6,795</td>
<td>32</td>
<td>19,907</td>
<td>30,796</td>
<td>3.8</td>
<td>31.6</td>
<td>64.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0–3.5</td>
<td>117</td>
<td>474</td>
<td>1,934</td>
<td>2</td>
<td>10,250</td>
<td>12,777</td>
<td>0.9</td>
<td>18.8</td>
<td>80.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5–4.0</td>
<td>100</td>
<td>295</td>
<td>1,768</td>
<td>3</td>
<td>13,513</td>
<td>15,679</td>
<td>0.7</td>
<td>13.2</td>
<td>86.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0–4.5</td>
<td>8</td>
<td>64</td>
<td>373</td>
<td>4,260</td>
<td>4,705</td>
<td>0.2</td>
<td>9.3</td>
<td>90.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5–5.0</td>
<td>31</td>
<td>36</td>
<td>156</td>
<td>1</td>
<td>6,593</td>
<td>6,817</td>
<td>0.5</td>
<td>2.8</td>
<td>96.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0<</td>
<td>42</td>
<td>19</td>
<td>136</td>
<td>167</td>
<td>11,798</td>
<td>12,162</td>
<td>1.7</td>
<td>1.3</td>
<td>97.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>118,661</td>
<td>30,524</td>
<td>48,606</td>
<td>3,677</td>
<td>118,613</td>
<td>320,081</td>
<td>38.2</td>
<td>24.7</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※昭和21年（1946年）8月10日現在。軍関係者等は含まれていない。
付録

表C-6 広島原爆における遮蔽の有無別死亡・不明者数（出典: 参考文献[66]）

<table>
<thead>
<tr>
<th>地上距離 km</th>
<th>遮蔽あり</th>
<th>遮蔽なし</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>人数</td>
<td>死亡不明</td>
</tr>
<tr>
<td>0-1.0</td>
<td>969</td>
<td>588</td>
</tr>
<tr>
<td>1.0-1.5</td>
<td>3,959</td>
<td>761</td>
</tr>
<tr>
<td>1.5-2.0</td>
<td>957</td>
<td>136</td>
</tr>
<tr>
<td>2.0-3.0</td>
<td>3,922</td>
<td>99</td>
</tr>
<tr>
<td>3.0-4.0</td>
<td>2,077</td>
<td>11</td>
</tr>
<tr>
<td>計</td>
<td>11,884</td>
<td>1,595</td>
</tr>
</tbody>
</table>

表C-7 広島原爆における距離別外傷発生頻度（出典: 参考文献[40]）

<table>
<thead>
<tr>
<th>地上距離 km</th>
<th>区分</th>
<th>外傷</th>
<th>調査対象人員</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>外</td>
<td>陰</td>
</tr>
<tr>
<td>0-0.5</td>
<td>実数・人</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>-</td>
<td>66.7</td>
</tr>
<tr>
<td>0.6-1.0</td>
<td>実数・人</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>22.7</td>
<td>60.3</td>
</tr>
<tr>
<td>1.1-1.5</td>
<td>実数・人</td>
<td>33</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>19.2</td>
<td>55.6</td>
</tr>
<tr>
<td>1.6-2.0</td>
<td>実数・人</td>
<td>64</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>12.1</td>
<td>43.2</td>
</tr>
<tr>
<td>2.1-2.5</td>
<td>実数・人</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>12.0</td>
<td>34.7</td>
</tr>
<tr>
<td>2.6-3.0</td>
<td>実数・人</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>8.1</td>
<td>25.5</td>
</tr>
<tr>
<td>3.1-3.5</td>
<td>実数・人</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>10.6</td>
<td>17.2</td>
</tr>
<tr>
<td>3.6-4.0</td>
<td>実数・人</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>5.0</td>
<td>25.0</td>
</tr>
<tr>
<td>4.1-4.5</td>
<td>実数・人</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>-</td>
<td>33.3</td>
</tr>
<tr>
<td>4.6-5.0</td>
<td>実数・人</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>計</td>
<td>実数・人</td>
<td>177</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>構成・%</td>
<td>12.1</td>
<td>40.6</td>
</tr>
</tbody>
</table>
付録C 死傷者推計の方法について

![Table and Diagram]

図C－2 原子爆弾災害分布（広島地区）（出典：参考文献[57]）

表C－8 木造・非木造別の屋内外傷率（表C－7の按分）

<table>
<thead>
<tr>
<th>地 上 距 離</th>
<th>調査対象人員</th>
<th>負傷者数</th>
<th>按分負傷率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>計</td>
<td>木造</td>
<td>非木造</td>
</tr>
<tr>
<td>km</td>
<td>人</td>
<td>人</td>
<td>人</td>
</tr>
<tr>
<td>0-0.5</td>
<td>24</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>0.5-1.0</td>
<td>210</td>
<td>133</td>
<td>77</td>
</tr>
<tr>
<td>1.0-1.5</td>
<td>631</td>
<td>441</td>
<td>190</td>
</tr>
<tr>
<td>1.5-2.0</td>
<td>770</td>
<td>651</td>
<td>119</td>
</tr>
<tr>
<td>2.0-2.5</td>
<td>563</td>
<td>538</td>
<td>25</td>
</tr>
<tr>
<td>2.5-3.0</td>
<td>284</td>
<td>272</td>
<td>12</td>
</tr>
<tr>
<td>3.0-3.5</td>
<td>230</td>
<td>不明</td>
<td>不明</td>
</tr>
<tr>
<td>3.5-4.0</td>
<td>102</td>
<td>不明</td>
<td>不明</td>
</tr>
<tr>
<td>4.0-4.5</td>
<td>24</td>
<td>不明</td>
<td>不明</td>
</tr>
<tr>
<td>4.5-5.0</td>
<td>109</td>
<td>不明</td>
<td>不明</td>
</tr>
</tbody>
</table>
付録

(3) 16キロトンの核兵器が空中で爆発した場合の急性期の死傷率の設定

① 屋外—開放

初期放射線の線量から、爆心地から900mまでは死亡率を100%とする。

900mから1.5kmまでは、表C－6の「遮蔽なし」の死亡率（1km〜1.5km）を適用し、以降、3kmまでは同様に表C－6の死亡率を適用した。なお、それより遠の屋外での死亡率は、表C－6にデータがないことや表C－5での死亡率が1％未満であることから、0%と見なし。その上で発線が、II度の熱傷を負う4.5cal/cm²（0.19MJ/m²）以上となる2.8kmまでは生存者に占める負傷者の割合を100%とし、それより遠については表C－7の屋外—開放での爆風による負傷率を適用した。（2.8〜3.0kmは整合性の問題から2.0〜3.0kmの平均値を、4.0〜4.5kmは4.5〜5.0kmの値を用いた。）

表C－9 16キロトンの核兵器の空中爆発での「屋外—開放」急性期死傷率の設定

<table>
<thead>
<tr>
<th>区分</th>
<th>0.5</th>
<th>0.9</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>2.8</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>死亡</td>
<td>100.0</td>
<td>100.0</td>
<td>85.3</td>
<td>85.3</td>
<td>83.7</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>負傷</td>
<td>-</td>
<td>-</td>
<td>14.7</td>
<td>14.7</td>
<td>16.3</td>
<td>85.5</td>
<td>85.5</td>
<td>9.5</td>
<td>10.6</td>
<td>5.0</td>
<td>2.6</td>
</tr>
<tr>
<td>無傷</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76.0</td>
<td>89.4</td>
<td>95.0</td>
<td>97.4</td>
</tr>
</tbody>
</table>

② 屋外—遮蔽

表C－6には、「遮蔽あり」の場合の死亡率が示されているが、参考文献[66]では、この数値は消息の判明した勤労学徒に関するデータであり、木造建物内内のものとされている。しかし、後に示す木造建物内での被災状況に関するいくつかのデータや図C－2を見る限り、これらの値を木造建物内での死亡率とするには無理がある（特に爆心地から1km以内）。データの詳細が明らかになっていないため、その理由は不明であるが、一方で、この死亡率は、図C－2を見た場合、屋外で遮蔽がある場合の値に相応しく、また「屋外—遮蔽」での死亡率に関するデータがほとんどないことから、ここでは、表C－6の「遮蔽あり」の場合の死亡率を「屋外—遮蔽」の死亡率とした。なお、3km以遠については、表C－5及びC－6とも1％未満であるため、0％と見なし。その上で、表C－7の爆風による負傷率を適用した。ただし、3.5km以遠ではデータ数が少ないと考え、これより遠の負傷率は「屋外—開放」で負傷率が半減している例にならって値を設定した。
付録C 死傷者推計の方法について

表C－10 16キロトンの核兵器の空中爆発での「屋外一遮蔽」急性期死傷率の設定

<table>
<thead>
<tr>
<th>区分</th>
<th>爆心地からの距離 km</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>死亡</td>
<td></td>
<td>60.7</td>
<td>19.2</td>
<td>14.2</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>負傷</td>
<td></td>
<td>23.8</td>
<td>44.9</td>
<td>37.1</td>
<td>30.4</td>
<td>17.2</td>
<td>8.6</td>
<td>4.3</td>
</tr>
<tr>
<td>無傷</td>
<td></td>
<td>15.5</td>
<td>35.9</td>
<td>48.7</td>
<td>67.1</td>
<td>82.8</td>
<td>91.4</td>
<td>95.7</td>
</tr>
</tbody>
</table>

③ 屋内一木造

屋内一木造での死亡率は、いくつかの文献に掲載されている個々の木造建物内での死亡者数等（表C－11）から設定した。まず、0.5kmまでは広島第一陸軍病院の99.9%を利用した。ただし、表C－8には生存者が示されているため99%とした。次に0.5～1.0kmは広島第二陸軍病院の75%を、1.0～1.5kmは広島女学院専門学校の26%を、1.5～2.0kmは大橋製靴の6%を利用した。また2.0～2.5kmについては、木造家屋に中程度以上の被害が生じるが、参考文献[31]から2.5kmくらいまでと推定されるため、最小値の1%を適用し、それ以遠については、負傷のみと見なした。

その上で、2kmまでは表C－7の屋内外傷率を木造・非木造に按分したの値（表C－8）を、2～4kmまでは表C－7の屋内の値を、4～4.5kmはデータ数が少ないため、表C－7の屋内の4～5kmの平均値をそれぞれ利用した。なお、ここでは過去と同様の範囲で大規模な火災が発生すると想定している。

表C－12 16キロトンの核兵器の空中爆発での「屋内一木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>区分</th>
<th>爆心地からの距離 km</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>死亡</td>
<td></td>
<td>99.0</td>
<td>75.0</td>
<td>26.0</td>
<td>6.0</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>負傷</td>
<td></td>
<td>1.0</td>
<td>23.0</td>
<td>69.0</td>
<td>70.0</td>
<td>65.7</td>
<td>57.7</td>
<td>35.7</td>
<td>30.4</td>
<td>20.3</td>
</tr>
<tr>
<td>無傷</td>
<td></td>
<td>-</td>
<td>2.0</td>
<td>5.0</td>
<td>24.0</td>
<td>33.3</td>
<td>42.3</td>
<td>64.3</td>
<td>69.6</td>
<td>79.7</td>
</tr>
<tr>
<td>企業・学校等名</td>
<td>地上距離 km</td>
<td>人的被害（実数：人）</td>
<td>構成比 %</td>
<td>摘要</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島郵便局</td>
<td>直下</td>
<td>257 256 1</td>
<td>100.0</td>
<td>参考文献[67]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島第一陸軍病院</td>
<td>0.5</td>
<td>750 749 1</td>
<td>99.9 0.0</td>
<td>参考文献[57]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>移動演劇団宿舍</td>
<td>0.7</td>
<td>17 17</td>
<td>100.0</td>
<td>参考文献[57]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島警察署</td>
<td>0.7</td>
<td>12 12</td>
<td>100.0</td>
<td>参考文献[67]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気通信工事局</td>
<td>0.9</td>
<td>402 94 75 233</td>
<td>23.4 18.7 58.0</td>
<td>参考文献67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島第二陸軍病院</td>
<td>1.0</td>
<td>402 274 29</td>
<td>75.4</td>
<td>参考文献[40]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島郵便局</td>
<td>1.0</td>
<td>53 26</td>
<td>49.1</td>
<td>参考文献68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島高等女学校</td>
<td>1.2</td>
<td>155 27 14 107 7</td>
<td>26.5 69.0 4.5</td>
<td>参考文献[69]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>興亜製針</td>
<td>1.4</td>
<td>74 6 39</td>
<td>60.8</td>
<td>参考文献[40]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>興亜製針</td>
<td>1.4</td>
<td>63 10</td>
<td>15.9</td>
<td>参考文献[71]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>興亜製針</td>
<td>1.4</td>
<td>55 9 32 14</td>
<td>16.4 58.2 25.5</td>
<td>参考文献40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>興亜製針</td>
<td>1.6</td>
<td>210 13 2</td>
<td>7.1</td>
<td>参考文献40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>興亜製針</td>
<td>1.6</td>
<td>207 20</td>
<td>9.7</td>
<td>参考文献[71]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島南郵便局</td>
<td>1.6</td>
<td>356 31 174 151</td>
<td>8.7 48.9 42.4</td>
<td>参考文献[67]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島南郵便局</td>
<td>1.6</td>
<td>39 25 14</td>
<td>0.0 64.1 35.9</td>
<td>参考文献40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高密機械</td>
<td>1.9</td>
<td>55 1 50 4 1.8</td>
<td>90.9 7.3</td>
<td>参考文献68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高密機械</td>
<td>1.9</td>
<td>71 5</td>
<td>7.0</td>
<td>参考文献[71]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大橋製靴</td>
<td>1.9</td>
<td>181 6 5</td>
<td>6.1</td>
<td>参考文献40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大橋製靴</td>
<td>1.9</td>
<td>182 9</td>
<td>4.9</td>
<td>参考文献[71]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大橋製靴</td>
<td>1.9</td>
<td>182 78</td>
<td>4.9</td>
<td>参考文献[71]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広島警察署</td>
<td>2.0</td>
<td>250 2 100 148 0.8</td>
<td>40.0 59.2</td>
<td>参考文献67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広島警察署</td>
<td>2.2</td>
<td>47 41</td>
<td>61.3</td>
<td>参考文献[73]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広島普通電話講習所</td>
<td>3.1</td>
<td>65 2 24 39 3.1</td>
<td>36.9 60.0</td>
<td>参考文献68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島郵便局</td>
<td>3.4</td>
<td>65 2 24 39 3.1</td>
<td>36.9 60.0</td>
<td>参考文献68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
付録C 死傷者推計の方法について

4 屋内－非木造

屋内－非木造での死亡率についても、いくつかの文献に掲載されている個々の非木造建物内での死亡者数等（表C－13）から設定した。まず、0.5kmまでは電信局の91％を、0.5～1.0kmは浅野図書館の27％を、1.0～1.5kmは通信局の6％を、1.5～2.0kmは広島駅の1％をそれぞれ利用し、2km以遠は1％未満のため0％と見なした。

2kmまでの負傷率は、木造の場合と同様に表C－7の外傷率を按分した表C－8により設定した。ただし、2km以遠についてはデータ数が少ないことから、木造の数値を参考に値を設定した。なお、火災についても木造と同様の考え方である。

表C－14 16キロトンの核兵器の空中爆発での「屋内－非木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>区分</th>
<th>爆心地からの距離 km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>死亡</td>
<td>91.0</td>
</tr>
<tr>
<td>負傷</td>
<td>7.0</td>
</tr>
<tr>
<td>無傷</td>
<td>2.0</td>
</tr>
</tbody>
</table>
表C-13 非木造建物内での死傷率

<table>
<thead>
<tr>
<th>企業・学校等名</th>
<th>地上距離 km</th>
<th>人間の被害 (人数: 人)</th>
<th>計</th>
<th>死亡</th>
<th>不明</th>
<th>負傷</th>
<th>無傷</th>
<th>死亡等</th>
<th>死傷</th>
<th>無傷</th>
<th>摘要</th>
</tr>
</thead>
<tbody>
<tr>
<td>作案銀行集会所</td>
<td>0.20</td>
<td>66 64</td>
<td>100</td>
<td>97.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[40] (不破含まず)</td>
</tr>
<tr>
<td>作案瓦斯本社</td>
<td>0.21</td>
<td>33 33</td>
<td>100</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[74]</td>
</tr>
<tr>
<td>作案銀行広島支店</td>
<td>0.26</td>
<td>117 107</td>
<td>91.5</td>
<td>82.9</td>
<td>7.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75] (2名生存)</td>
</tr>
<tr>
<td>電信局</td>
<td>0.33</td>
<td>117 97</td>
<td>82.4</td>
<td>82.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[68]</td>
</tr>
<tr>
<td>日本簡易火災保険</td>
<td>0.33</td>
<td>17 14</td>
<td>82.4</td>
<td>82.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75]</td>
</tr>
<tr>
<td>帝国銀行広島支店</td>
<td>0.36</td>
<td>12 12</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[67] (全員脱出後死亡)</td>
</tr>
<tr>
<td>日本銀行広島支店</td>
<td>0.38</td>
<td>21 14 7</td>
<td>66.7</td>
<td>33.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[67] (財務局分含む)</td>
</tr>
<tr>
<td>中央電話局</td>
<td>0.54</td>
<td>150 50 93 7</td>
<td>33.3</td>
<td>62.0</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[57]</td>
</tr>
<tr>
<td>中国鶯江本社</td>
<td>0.68</td>
<td>272 163</td>
<td>59.9</td>
<td>59.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75] (1年後の死者)</td>
</tr>
<tr>
<td>浅野書籍館</td>
<td>0.75</td>
<td>183 64 54 65</td>
<td>35.0</td>
<td>29.5</td>
<td>35.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[57]</td>
</tr>
<tr>
<td>流川幹事所</td>
<td>0.90</td>
<td>206 216</td>
<td>48.8</td>
<td>51.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[68]</td>
</tr>
<tr>
<td>日本銀行業銀行広島支社</td>
<td>0.94</td>
<td>54 65</td>
<td>35.0</td>
<td>29.5</td>
<td>35.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75]</td>
</tr>
<tr>
<td>中央放送局</td>
<td>1.00</td>
<td>260 34</td>
<td>13.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75] (即日死のみ)</td>
</tr>
<tr>
<td>市役所</td>
<td>1.02</td>
<td>50 50 30 50～60</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75]</td>
</tr>
<tr>
<td>運送病院</td>
<td>1.37</td>
<td>48 5 32 11</td>
<td>10.4</td>
<td>66.7</td>
<td>22.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[68] (建物内死者はなし)</td>
</tr>
<tr>
<td>運送局</td>
<td>1.38</td>
<td>245 15 6 224</td>
<td>6.1</td>
<td>2.4</td>
<td>91.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[57]</td>
</tr>
<tr>
<td>赤十字病院</td>
<td>1.50</td>
<td>480 2</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[57]</td>
</tr>
<tr>
<td>塩金支局</td>
<td>1.61</td>
<td>871 87 488 296</td>
<td>10.0</td>
<td>56.0</td>
<td>34.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[67] (福屋分室含む)</td>
</tr>
<tr>
<td>広島駅</td>
<td>1.90</td>
<td>926 11 201 714</td>
<td>1.2</td>
<td>21.7</td>
<td>77.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[75] (軽量建物の含む)</td>
</tr>
<tr>
<td>広島地方専売局</td>
<td>2.26</td>
<td>1,000 1 800 199</td>
<td>0.1</td>
<td>80.0</td>
<td>19.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[67]</td>
</tr>
<tr>
<td>広島地方気象台</td>
<td>3.63</td>
<td>25 25</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>参考文献[67]</td>
</tr>
</tbody>
</table>
付録C 死傷者推計の方法について

⑤ 計算結果

上記の死傷率を適用して計算した死傷者数及び過去の被害想定事例等での死傷率を適用して計算した死傷者数を表C－15に示す。

今回設定した死傷率では、鉄筋コンクリート等の堅牢な建物による防護効果を高く見込んでいること、及びそうした堅牢な建物内に多くの人がいるか見込んでいることから、計算結果では、62年前の広島原爆に比べ死亡者数が大幅に減ることとなった。

表C－15 16キロトンの核兵器の空中爆発における推計死傷者数（急性期）の比較

<table>
<thead>
<tr>
<th>適用死傷率</th>
<th>試算値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>被災人口</td>
</tr>
<tr>
<td>Superfire -10cal/cm²</td>
<td>585,215 人 (4.5km 圏)</td>
</tr>
<tr>
<td>広島原爆戦災誌</td>
<td>172,297 人</td>
</tr>
<tr>
<td>Superfire -25cal/cm²</td>
<td>169,911 人</td>
</tr>
<tr>
<td>OTA</td>
<td>144,310 人</td>
</tr>
<tr>
<td>今回設定した死傷率</td>
<td>66,352 人</td>
</tr>
</tbody>
</table>

＜広島原爆＞

<table>
<thead>
<tr>
<th>区 分</th>
<th>被災人口</th>
<th>死亡等</th>
<th>負傷</th>
<th>死傷率</th>
</tr>
</thead>
<tbody>
<tr>
<td>広島原爆戦災誌</td>
<td>320,081 人 (5km 超含)</td>
<td>122,338 人 (不明含む)</td>
<td>79,130 人</td>
<td>62.9%</td>
</tr>
</tbody>
</table>

表C－16 4.5km圏の推計昼間人口分布

<table>
<thead>
<tr>
<th>計</th>
<th>屋内一木造</th>
<th>屋内一非木造</th>
<th>屋外一遮蔽</th>
<th>屋外一開放</th>
</tr>
</thead>
<tbody>
<tr>
<td>585,215 人</td>
<td>95,136 人</td>
<td>431,558 人</td>
<td>43,891 人</td>
<td>14,630 人</td>
</tr>
<tr>
<td>100.0%</td>
<td>16.3%</td>
<td>73.7%</td>
<td>7.5%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

※推計方法については、付録C「昼間人口の分類」参照のこと。

なお、ここで用いた過去の被害想定事例等での死傷率について若干の説明を行っておく。

まず、OTA とは、米国議会技術評価局（Office of Technology Assessment, Congress of the United States）が核戦争の影響について1979年にまとめた報告の中で用いているもので、爆風の強さに応じて表C－17に示す死傷率を適用するというものである[41]。

これに対し、Superfire とは、OTAのモデルは核爆発が引き起こす火災の影
付録

響を過小評価しているとし、OTAの死傷率に加え、ある一定の範囲内では巨大な火災風（Superfire）が発生し、その範囲内での死亡率は100%になるものである[44]。ここでは、その巨大な火災風の範囲を線の値が10cal／cm²以上になる場合と25cal／cm²以上となる場合の2つについて試算している。

表C－17 参考文献[41]での設定死傷率

<table>
<thead>
<tr>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>安全</th>
</tr>
</thead>
<tbody>
<tr>
<td>＞12psi (82.7kPa)</td>
<td>98%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>5-12psi (34.5-82.7kPa)</td>
<td>50%</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>2-5psi (13.8-34.5kPa)</td>
<td>5%</td>
<td>45%</td>
<td>50%</td>
</tr>
<tr>
<td>1-2psi (6.9-13.8kPa)</td>
<td>25%</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

また、今回設定した死傷率による試算結果を用い、生存者における後障害の過剰発症数を概算した。なお、ここで言う被曝線量とは、設定した遮蔽条件に基づいて計算したものであり、放射線の死傷基準とは必ずしも一致しない。

表C－18 16キロトンの核兵器の空中爆発での推計後障害発症数

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>生存者数（人）</th>
<th>後障害（白血病・がんの過剰発症数）</th>
<th>発症数（人）</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Sv以上</td>
<td>25,007</td>
<td>33/1000 300/1000</td>
<td>825 7,502</td>
</tr>
<tr>
<td>2以上 3Sv未満</td>
<td>7,052</td>
<td>16.5/1000 150/1000</td>
<td>116 1,057</td>
</tr>
<tr>
<td>0.5 以上 2Sv未満</td>
<td>18,825</td>
<td>11/1000 100/1000</td>
<td>207 1,882</td>
</tr>
<tr>
<td>0.25 以上 0.5Sv未満</td>
<td>19,953</td>
<td>3.3/1000 30/1000</td>
<td>63 597</td>
</tr>
<tr>
<td>0.01 以上 0.25Sv未満</td>
<td>84,478</td>
<td>1.1/1000 10/1000</td>
<td>92 844</td>
</tr>
<tr>
<td>計</td>
<td>155,315</td>
<td>— —</td>
<td>1,303 11,882</td>
</tr>
</tbody>
</table>

※被曝線量については、付録D表D－1に示す値に、付録C（91、92ページ）に示す遮蔽条件を適用して求めた値である。後障害の発症基準については表C－3参照のこと。

（4）1メガトンの核兵器が空中で爆発した場合の急性期死傷率の設定

1メガトンの空中爆発では、熱線でII度以上の熱傷を負う範囲が半径15kmにも及ぶため、特に熱線の影響をどう評価するかによって、被害は大きく変動する。ここでは、16キロトンの核兵器の空中爆発の場合について設定した急性期死傷率を爆風の強さに応じて適用する。このことにより、熱線の影響が過小評価されることに留意する必要がある。なお、7.9km圏内（過圧の値で16キロトンの空中爆
発の2km圏に相当）では大規模な火災が発生すると仮定する。

表C-19 1メガトンの核兵器の空中爆発での「屋外一開放」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
</tr>
<tr>
<td>0-0.9</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9-1.0</td>
</tr>
<tr>
<td>0.9-3.9</td>
<td>10.28 (70.85)</td>
<td>85.3</td>
<td>14.7</td>
<td>-</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td>3.9-5.9</td>
<td>5.71 (39.39)</td>
<td>85.3</td>
<td>14.7</td>
<td>-</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>5.9-7.9</td>
<td>3.59 (24.78)</td>
<td>83.7</td>
<td>16.3</td>
<td>-</td>
<td>2.0-2.5</td>
</tr>
<tr>
<td>7.9-9.9</td>
<td>2.51 (17.28)</td>
<td>14.5</td>
<td>85.5</td>
<td>-</td>
<td>2.5-2.8</td>
</tr>
<tr>
<td>9.9-11.9</td>
<td>1.88 (12.94)</td>
<td>14.5</td>
<td>85.5</td>
<td>-</td>
<td>4.0-4.5</td>
</tr>
</tbody>
</table>

※1 初期放射線により全員死亡と仮定した。
※2 半径15km以内では全員がII度以上の熱傷を負うと仮定した。

表C-20 1メガトンの核兵器の空中爆発での「屋外一遮蔽」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
</tr>
<tr>
<td>0-3.9</td>
<td>10.28 (70.85)</td>
<td>60.7</td>
<td>23.8</td>
<td>15.5</td>
<td>0-1.0</td>
</tr>
<tr>
<td>3.9-5.9</td>
<td>5.71 (39.39)</td>
<td>19.2</td>
<td>44.9</td>
<td>35.9</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td>5.9-7.9</td>
<td>3.59 (24.78)</td>
<td>14.2</td>
<td>37.1</td>
<td>48.7</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>7.9-11.9</td>
<td>1.88 (12.94)</td>
<td>2.5</td>
<td>30.4</td>
<td>67.1</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>11.9-13.9</td>
<td>1.48 (10.17)</td>
<td>-</td>
<td>17.2</td>
<td>82.8</td>
<td>3.0-3.5</td>
</tr>
<tr>
<td>13.9-15.9</td>
<td>1.20 (8.29)</td>
<td>-</td>
<td>8.6</td>
<td>91.4</td>
<td>3.5-4.0</td>
</tr>
<tr>
<td>15.9-18.0</td>
<td>1.00 (6.88)</td>
<td>-</td>
<td>4.3</td>
<td>95.7</td>
<td>4.0-4.5</td>
</tr>
</tbody>
</table>
表C－21 1メガトンの核兵器の空中爆発での「屋内－木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離（km）</th>
<th>過圧（psi, kPa）</th>
<th>死亡（%）</th>
<th>負傷（%）</th>
<th>無傷（%）</th>
<th>地上距離（km）</th>
<th>過圧（psi, kPa）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.9</td>
<td>16.30 (112.36)</td>
<td>99.0</td>
<td>1.0</td>
<td>—</td>
<td>0-0.5</td>
<td>15.90 (109.63)</td>
</tr>
<tr>
<td>1.9-3.9</td>
<td>10.28 (70.85)</td>
<td>75.0</td>
<td>23.0</td>
<td>2.0</td>
<td>0-1.0</td>
<td>10.09 (69.56)</td>
</tr>
<tr>
<td>3.9-5.9</td>
<td>5.71 (39.39)</td>
<td>26.0</td>
<td>69.0</td>
<td>5.0</td>
<td>1.0-1.5</td>
<td>5.62 (38.74)</td>
</tr>
<tr>
<td>5.9-7.9</td>
<td>3.59 (24.78)</td>
<td>6.0</td>
<td>70.0</td>
<td>24.0</td>
<td>1.5-2.0</td>
<td>3.55 (24.51)</td>
</tr>
<tr>
<td>7.9-9.9</td>
<td>2.51 (17.28)</td>
<td>1.0</td>
<td>65.7</td>
<td>33.3</td>
<td>2.0-2.5</td>
<td>2.49 (17.16)</td>
</tr>
<tr>
<td>9.9-11.9</td>
<td>1.88 (12.94)</td>
<td>—</td>
<td>57.7</td>
<td>42.3</td>
<td>2.5-3.0</td>
<td>1.87 (12.88)</td>
</tr>
<tr>
<td>11.9-13.9</td>
<td>1.48 (10.17)</td>
<td>—</td>
<td>35.7</td>
<td>64.3</td>
<td>3.0-3.5</td>
<td>1.47 (10.15)</td>
</tr>
<tr>
<td>13.9-15.9</td>
<td>1.20 (8.29)</td>
<td>—</td>
<td>30.4</td>
<td>69.6</td>
<td>3.5-4.0</td>
<td>1.20 (8.29)</td>
</tr>
<tr>
<td>15.9-18.0</td>
<td>1.00 (6.88)</td>
<td>—</td>
<td>20.3</td>
<td>79.7</td>
<td>4.0-4.5</td>
<td>1.01 (6.95)</td>
</tr>
</tbody>
</table>

表C－22 1メガトンの核兵器の空中爆発での「屋内－非木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離（km）</th>
<th>過圧（psi, kPa）</th>
<th>死亡（%）</th>
<th>負傷（%）</th>
<th>無傷（%）</th>
<th>地上距離（km）</th>
<th>過圧（psi, kPa）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.9</td>
<td>16.30 (112.36)</td>
<td>91.0</td>
<td>7.0</td>
<td>2.0</td>
<td>0-0.5</td>
<td>15.90 (109.63)</td>
</tr>
<tr>
<td>1.9-3.9</td>
<td>10.28 (70.85)</td>
<td>27.0</td>
<td>35.0</td>
<td>38.0</td>
<td>0-1.0</td>
<td>10.09 (69.56)</td>
</tr>
<tr>
<td>3.9-5.9</td>
<td>5.71 (39.39)</td>
<td>6.0</td>
<td>47.0</td>
<td>47.0</td>
<td>1.0-1.5</td>
<td>5.62 (38.74)</td>
</tr>
<tr>
<td>5.9-7.9</td>
<td>3.59 (24.78)</td>
<td>1.0</td>
<td>49.0</td>
<td>50.0</td>
<td>1.5-2.0</td>
<td>3.55 (24.51)</td>
</tr>
<tr>
<td>7.9-9.9</td>
<td>2.51 (17.28)</td>
<td>—</td>
<td>42.0</td>
<td>58.0</td>
<td>2.0-2.5</td>
<td>2.49 (17.16)</td>
</tr>
<tr>
<td>9.9-11.9</td>
<td>1.88 (12.94)</td>
<td>—</td>
<td>35.7</td>
<td>64.3</td>
<td>2.5-3.0</td>
<td>1.87 (12.88)</td>
</tr>
<tr>
<td>11.9-13.9</td>
<td>1.48 (10.17)</td>
<td>—</td>
<td>30.4</td>
<td>69.6</td>
<td>3.0-3.5</td>
<td>1.47 (10.15)</td>
</tr>
<tr>
<td>13.9-15.9</td>
<td>1.20 (8.29)</td>
<td>—</td>
<td>20.3</td>
<td>79.7</td>
<td>3.5-4.0</td>
<td>1.20 (8.29)</td>
</tr>
<tr>
<td>15.9-18.0</td>
<td>1.00 (6.88)</td>
<td>—</td>
<td>12.3</td>
<td>87.7</td>
<td>4.0-4.5</td>
<td>1.01 (6.95)</td>
</tr>
</tbody>
</table>

上記の死傷率を適用して試算した死傷者数及び過去の被害想定事例等での死傷率を適用して試算した死傷者数を表C－23に示す。
また、今回設定した死傷率による試算結果を用い、生存者における後障害の過剰発症数を概算したものが表C－24である。
付録C 死傷者推計の方法について

表C-23 1メガトンの核兵器の空中爆発における推計死傷者数（急性期）の比較

<table>
<thead>
<tr>
<th>適用死傷率</th>
<th>試算値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>被災人口</td>
</tr>
<tr>
<td>Superfire -10cal/cm²</td>
<td>1,359,659人（18km 圏）</td>
</tr>
<tr>
<td>Superfire -25cal/cm²</td>
<td>877,311人</td>
</tr>
<tr>
<td>Conflagration Model ※</td>
<td>802,511人</td>
</tr>
<tr>
<td>OTA</td>
<td>602,460人</td>
</tr>
<tr>
<td>今回設定した死傷率</td>
<td>372,596人</td>
</tr>
</tbody>
</table>

※ Conflagration Model
大規模な火災が発生する範囲を広島原爆の2km地点での過圧の値とリンクさせて設定（この場合は7.9km）、その内側の同1kmまでの範囲（同5.9km）では死亡率100%、5.9〜7.9kmでは50%死亡、33%負傷とし、7.9km以遠ではOTAモデルに従うというものである[76]。

表C-24 1メガトンの核兵器の空中爆発での推計後障害発症数

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>生存者数 (人)</th>
<th>後障害（白血病・がんの過剰発症数）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>確率</td>
<td>発症数(人)</td>
</tr>
<tr>
<td>3Sv以上</td>
<td>385</td>
<td>33/1000 300/1000 12 115</td>
</tr>
<tr>
<td>2以上3Sv未満</td>
<td>115</td>
<td>16.5/1000 150/1000 1 17</td>
</tr>
<tr>
<td>0.5以上2Sv未満</td>
<td>415</td>
<td>11/1000 100/1000 4 41</td>
</tr>
<tr>
<td>0.25以上0.5Sv未満</td>
<td>1,399</td>
<td>3.3/1000 30/1000 4 41</td>
</tr>
<tr>
<td>0.01以上0.25Sv未満</td>
<td>44,054</td>
<td>1.1/1000 10/1000 48 440</td>
</tr>
<tr>
<td>計</td>
<td>46,368</td>
<td>— — 69 654</td>
</tr>
</tbody>
</table>

※被曝線量については、付録D表D-2に示す値に、付録C（91、92ページ）に示す遮蔽条件を適用して求めた値である。後障害の発症基準については表C-3参照のこと。

(5) 16キロトンの核兵器が地表で爆発した場合の急性期死傷率の設定
3)で設定した距離別死傷率等を次のような考え方で適用した。
① 前提条件
参考文献[31,39,77,78]から、およそ半径270mの大きさとなる火球は、秒速

参考文献[76]には、大規模な火災の発生範囲について、この他にもいくつかのパターンが検討されている。
付 録

数十mの速さで上昇し、1.9秒間に熱線として放出されるエネルギーの8割を
放出すると考えられる。このため、

ア 初期放射線及び熱線の直撃を受ける「屋外一開放」の割合については、
これらを放出する火球が地表から上空へ上昇するため、16キロトんの空中
爆発の場合の数値を適用する。ただし、初期放射線の値の計算において、
火球の上昇速度は考慮しない。

イ 火球の上昇等を考慮しても、最低でも半径200mは火球に呑み込まれる
ため、この範囲は建物の内外を問わず100%致死圏とする。

ウ 広島原爆の半径2kmに相当する熱線9.02cal／cm²（0.38MJ／m²）以上
の範囲（1,100m）内で大規模な火炎が発生すると想定する。

② 屋外一開放

まず、1.5kmまでは初期放射線による100%致死圏とする。次に1.5～
1.6kmでは半数が初期放射線で死亡し、残る半数が急性放射線症とII度の
熱傷を負う。次に1.6～1.7kmでは5%が死亡し、残る95%が急性放射線症
を負い、1.7～1.9kmでは全員が急性放射線症を負う。1.9km以遠につい
では、爆風のみが影響するため、爆風の強さに応じて16キロトんの空中爆発で
設定した死傷率を用い、1.9～2.2kmで負傷率11.1%、2.2km～2.6km
で負傷率10.6%、2.6～3.1kmで負傷率5%、3.1～3.5kmで負傷率
2.6%とした。

③ 屋外一遮蔽

空中爆発の場合、半径1km以内を死亡率60.7%、負傷率23.9%としたが、
この時の爆心地から1kmでの過圧は10.09psi（69.56kPa）である。これに
対し、地表爆発の場合、700mで12.56psi（86.57kPa）となるので、ここまで
の範囲に、この死傷率を適用した。なお、地表爆発の700m以内は、空中爆発
の1km以内よりも激しい爆風にさらされるが、建物による遮蔽により初期放射
線や熱線の量は空中爆発の場合ほどではないなど、両者に同じ死傷率を適用
するのは厳密に言えば困難であるが、ここでは、個々の違いが互いに相殺され、
概ね同等な死傷率になると仮定している。

このようにして、爆風の強さを基に16キロトんの空中爆発での設定死傷率を
適用した。

④ 屋内一木造及び屋内一非木造

基本的に「屋外一遮蔽」の場合と同様に死傷率を設定した。ただし、屋内での
死亡には、大規模な火災が大きく影響するため、その点については調整し
た。
付録C 死傷者推計の方法について

表C－25 16キロトンの核兵器の地表爆発での「屋外—遮蔽」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
</tr>
<tr>
<td>0.2–0.7</td>
<td>12.56 (86.57)</td>
<td>60.7</td>
<td>23.8</td>
<td>15.5</td>
<td>0–1.0</td>
</tr>
<tr>
<td>0.7–1.0</td>
<td>6.55 (45.18)</td>
<td>19.2</td>
<td>44.9</td>
<td>35.9</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>1.0–1.4</td>
<td>3.79 (26.12)</td>
<td>14.2</td>
<td>37.1</td>
<td>48.7</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>1.4–2.2</td>
<td>1.95 (13.42)</td>
<td>2.5</td>
<td>30.4</td>
<td>67.1</td>
<td>2.0–3.0</td>
</tr>
<tr>
<td>2.2–2.6</td>
<td>1.54 (10.64)</td>
<td>17.2</td>
<td>82.8</td>
<td>15.7</td>
<td>3.0–3.5</td>
</tr>
<tr>
<td>2.6–3.1</td>
<td>1.21 (8.37)</td>
<td>8.6</td>
<td>91.4</td>
<td>8.6</td>
<td>3.5–4.0</td>
</tr>
<tr>
<td>3.1–3.5</td>
<td>1.03 (7.12)</td>
<td>4.3</td>
<td>95.7</td>
<td>4.0–4.5</td>
<td>1.01 (6.95)</td>
</tr>
</tbody>
</table>

表C－26 16キロトンの核兵器の地表爆発での「屋内—木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
</tr>
<tr>
<td>0.2–0.6</td>
<td>17.07 (117.66)</td>
<td>99.0</td>
<td>1.0</td>
<td>0–0.5</td>
<td>15.90 (109.63)</td>
</tr>
<tr>
<td>0.6–0.7</td>
<td>12.56 (86.57)</td>
<td>75.0</td>
<td>23.0</td>
<td>2.0</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>0.7–1.0</td>
<td>6.55 (45.18)</td>
<td>26.0</td>
<td>69.0</td>
<td>5.0</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>1.0–1.1</td>
<td>5.58 (38.46)</td>
<td>6.0</td>
<td>70.0</td>
<td>24.0</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>1.1–1.4</td>
<td>3.79 (26.12)</td>
<td>1.0</td>
<td>65.7</td>
<td>33.3</td>
<td>※</td>
</tr>
<tr>
<td>1.4–1.8</td>
<td>2.60 (17.90)</td>
<td>1.0</td>
<td>65.7</td>
<td>33.3</td>
<td>2.0–2.5</td>
</tr>
<tr>
<td>1.8–2.2</td>
<td>1.95 (13.42)</td>
<td>57.7</td>
<td>42.3</td>
<td>2.5–3.0</td>
<td>1.87 (12.88)</td>
</tr>
<tr>
<td>2.2–2.6</td>
<td>1.54 (10.64)</td>
<td>35.7</td>
<td>64.3</td>
<td>3.0–3.5</td>
<td>1.47 (10.15)</td>
</tr>
<tr>
<td>2.6–3.1</td>
<td>1.21 (8.37)</td>
<td>30.4</td>
<td>69.6</td>
<td>3.5–4.0</td>
<td>1.20 (8.29)</td>
</tr>
<tr>
<td>3.1–3.5</td>
<td>1.03 (7.12)</td>
<td>20.3</td>
<td>79.7</td>
<td>4.0–4.5</td>
<td>1.01 (6.95)</td>
</tr>
</tbody>
</table>

※地表爆発の場合、大規模な火災は1.1kmまでと仮定しているため、大規模な火災に見舞われた1.5～2.0kmの空中爆発の死傷率ではなく、大規模な火災の線外であった2.0～2.5kmの死傷率を適用した。
表C－27 16キロトンの核兵器の地表爆発での「屋内—非木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
<td>psi (kPa)</td>
</tr>
<tr>
<td>0.2-0.6</td>
<td>17.07 (117.66)</td>
<td>91.0</td>
<td>7.0</td>
<td>2.0</td>
<td>0-0.5</td>
<td>15.90 (109.63)</td>
</tr>
<tr>
<td>0.6-0.7</td>
<td>12.56 (86.57)</td>
<td>27.0</td>
<td>35.0</td>
<td>38.0</td>
<td>0.5-1.0</td>
<td>10.09 (69.56)</td>
</tr>
<tr>
<td>0.7-1.0</td>
<td>6.55 (45.18)</td>
<td>6.0</td>
<td>47.0</td>
<td>47.0</td>
<td>1.0-1.5</td>
<td>5.62 (38.74)</td>
</tr>
<tr>
<td>1.0-1.1</td>
<td>5.58 (38.46)</td>
<td>1.0</td>
<td>49.0</td>
<td>50.0</td>
<td>1.5-2.0</td>
<td>3.55 (24.51)</td>
</tr>
<tr>
<td>1.1-1.4</td>
<td>3.79 (26.12)</td>
<td>42.0</td>
<td>58.0</td>
<td>*</td>
<td>2.0-2.5</td>
<td>2.49 (17.16)</td>
</tr>
<tr>
<td>1.4-1.8</td>
<td>2.60 (17.90)</td>
<td>42.0</td>
<td>58.0</td>
<td>2.0-2.5</td>
<td>2.49 (17.16)</td>
<td></td>
</tr>
<tr>
<td>1.8-2.2</td>
<td>1.95 (13.42)</td>
<td>35.7</td>
<td>64.3</td>
<td>2.5-3.0</td>
<td>1.87 (12.88)</td>
<td></td>
</tr>
<tr>
<td>2.2-2.6</td>
<td>1.54 (10.64)</td>
<td>30.4</td>
<td>69.6</td>
<td>3.0-3.5</td>
<td>1.47 (10.15)</td>
<td></td>
</tr>
<tr>
<td>2.6-3.1</td>
<td>1.21 (8.37)</td>
<td>20.3</td>
<td>79.7</td>
<td>3.5-4.0</td>
<td>1.20 (8.29)</td>
<td></td>
</tr>
<tr>
<td>3.1-3.5</td>
<td>1.03 (7.12)</td>
<td>12.3</td>
<td>87.7</td>
<td>4.0-4.5</td>
<td>1.01 (6.95)</td>
<td></td>
</tr>
</tbody>
</table>

※地表爆発の場合、大規模な火災は1. 1kmまでに限定しているため、大規模な火災に見舞われた1. 5〜2. 0kmの空中爆発の死傷率ではなく、大規模な火災の際外であった2. 0〜2. 5kmの死傷率を適用した。

5 計算結果

上記の死傷率を適用して試算した死傷者数及び過去の被害想定事例等での死傷率を適用して試算した死傷者数を表C－28に示す。

表C－28 16キロトンの核兵器の地表爆発における推計死傷者数（急性期）の比較（残留放射線の影響を除く）

<table>
<thead>
<tr>
<th>適用死傷率</th>
<th>被災人口</th>
<th>試算値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>被災人口</td>
<td>死亡</td>
</tr>
<tr>
<td>Supfire -10cal/cm²</td>
<td>461,422人 (3.5km圈)</td>
<td>118,557人</td>
</tr>
<tr>
<td>Supfire -25cal/cm²</td>
<td>100,509人</td>
<td>139,970人</td>
</tr>
<tr>
<td>OTA</td>
<td>99,234人</td>
<td>141,245人</td>
</tr>
<tr>
<td>今回設定した死傷率</td>
<td>55,770人</td>
<td>146,739人</td>
</tr>
</tbody>
</table>

ただし、上記の死傷者数は、初期放射線、爆風及び熱線並びにその後の火災の影響のみを考慮したものであり、最終的な死傷者数を試算するためには、

108
付録C 死傷者推計の方法について

これに放射性降下物の影響を加味しなければならない。
そこで、ここでは、
・ 爆発直後に16キロトンの核兵器の地表爆発により発生する全残留放射能の6割（参考文献[31]の例による）が早期に降下し、そのうちの半分が半径3kmの範囲（参考文献[31,79,80]から算出したキノコ雲の半径等を参考に影響範囲として設定）に一様に降り積む。
・ 半径3km圈内の生存者は、この圏内からの脱出を試みる。脱出に要する時間は、爆心地から半径1.5kmまでの区域では平均1時間、1.5kmから3kmまでの区域では平均30分とする。
・ 避難の際、放射能を帯びた物質を吸引し、又は肌を露出することはない。
火災の影響も全くない。
という条件の下で、
ア 爆発直後直ちに避難する。
イ 残留放射線の影響が極めて大きい最初の1時間[31]は、その影響を完全に遮断できる場所にとどまってから避難する。
ウ 残留放射線の強さが1/10になる[31]とされる7時間後に避難する。それまではイの場合と同じく影響の及ばない場所にとどまる。
という3つのパターンについてシミュレーションを行い、上記の死傷者数の算定値を修正するとともに、生存者における後障害の過剰発症数を試算した。
3つのパターンにおける被曝線量を表C-29に示すとともに、シミュレーションの結果を表C-30及びC-31に示す。

表C-29 16キロトンの核兵器の地表爆発において、半径3kmに放射性降下物が一様に堆積したと仮定した場合の脱出時ガンマ線量

<table>
<thead>
<tr>
<th>区域</th>
<th>脱出時の被曝線量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>爆発直後に脱出</td>
</tr>
<tr>
<td>1.5km圏</td>
<td>113.7Sv</td>
</tr>
<tr>
<td>1.5-3.0km圏</td>
<td>97.7Sv</td>
</tr>
</tbody>
</table>

※値は付録D表D-5の値の6割である。また、この値は塵の上昇や輸送、降下に関する時間を考慮していない。（爆発後直ちに地表に堆積）
付録

表C－30 16キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく急性期の死傷者数の試算結果

<table>
<thead>
<tr>
<th>適用死傷率</th>
<th>試算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>被災人口</td>
<td>死亡</td>
</tr>
<tr>
<td>今回設定した死傷率＋放射性降下物の影響</td>
<td>461,422人 (3.5km圏)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※表C－28の死傷者数に放射性降下物の影響を加味した値である。直接及び1時間後に脱出した場合、放射性降下物の影響を受けると仮定した半径3km圏では全員が死亡する。

表C－31 16キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく後障害発症数の試算結果（7時間後脱出の場合）

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>生存者数（人）</th>
<th>後障害（白血病・がんの過剰発症数）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>確 率</td>
</tr>
<tr>
<td></td>
<td></td>
<td>白血病</td>
</tr>
<tr>
<td>5Sv以上</td>
<td>127,857</td>
<td>33/1000</td>
</tr>
<tr>
<td>2以上 3Sv未満</td>
<td>600</td>
<td>16.5/1000</td>
</tr>
<tr>
<td>0.5以上 2Sv未満</td>
<td>211,618</td>
<td>11/1000</td>
</tr>
<tr>
<td>計</td>
<td>340,075</td>
<td>―</td>
</tr>
</tbody>
</table>

※直後及び1時間後に脱出した場合、放射性降下物の影響を受けると仮定した半径3km圏では全員が死亡するため後障害は発症しない。後障害の発症基準については表C－3参照のこと。

(6) 1キロトンの核兵器が地表で爆発した場合の急性期死傷率の設定

① 前提条件

参考文献[31, 39, 77, 78]から、およそ半径90mの大きさとなる火球は、秒速数十mの速さで上昇し、0.5秒間に熱線として放出されるエネルギーの8割を放出すると考えられる。このため、
ア 初期放射線も熱線も全く水平方向にのみ放出されるわけではないので、それらの直撃を受ける人間の割合（屋外一開放）については変更しない。ただし、初期放射線の値の計算において、火球の上昇速度は考慮しない。
イ 火球の上昇等を考慮したとしても、半径100m近くまでは火球に呑み込まれるため、この範囲は建物の内外を問わず100％致死圏とする
付録C 死傷者推計の方法について

ウ 広島原爆の半径2kmに相当する熱線9.02cal／cm²（0.38MJ／㎡）以上の範囲は（300m）内で大規模な火災が発生すると想定する。

エ なお、1キロトンの核兵器の地表爆発の場合、爆風が1psi（6.9kPa）以上となる範囲を超えて初期放射線の影響が及ぶため、1psi（6.9kPa）以上となる範囲内で初期の死傷者数を試算し、その上で初期放射線0.01Sv以上の範囲で生存者における後遺症を試算する。

② 屋外一開放
まず、1.1kmまでは初期放射線により100%死亡する。次に1.1〜1.2kmでは5%が初期放射線で死亡し、残りは急性放射線症を負う。次に1.2〜1.3kmでは全員が急性放射線症を負う。1.3〜1.4kmでは爆風のみが影響するため、爆風の強さに応じて16キロトンの空中爆発で設定した死傷率を用い負傷率2.6%とした。

③ 屋外一遮蔽、屋内一木造及び屋内一非木造
16キロトンの地表爆発を行ったのと同様の方法で、以下、16キロトンの核兵器の空中爆発で設定した死傷率を爆風の強さに応じて適用した。

表C－32 1キロトンの核兵器の地表爆発での「屋外一遮蔽」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離（km）</th>
<th>過圧（psi）</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲（km）</th>
<th>過圧（psi）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1〜0.3</td>
<td>10.85（74.81）</td>
<td>60.7</td>
<td>23.8</td>
<td>15.5</td>
<td>0〜1.0</td>
<td>10.09（69.56）</td>
</tr>
<tr>
<td>0.3〜0.4</td>
<td>6.47（44.62）</td>
<td>19.2</td>
<td>44.9</td>
<td>35.9</td>
<td>1.0〜1.5</td>
<td>5.62（38.74）</td>
</tr>
<tr>
<td>0.4〜0.5</td>
<td>4.48（30.86）</td>
<td>14.2</td>
<td>37.1</td>
<td>48.7</td>
<td>1.5〜2.0</td>
<td>3.55（24.51）</td>
</tr>
<tr>
<td>0.5〜0.9</td>
<td>1.87（12.87）</td>
<td>2.5</td>
<td>30.4</td>
<td>67.1</td>
<td>2.0〜3.0</td>
<td>1.87（12.88）</td>
</tr>
<tr>
<td>0.9〜1.0</td>
<td>1.61（11.12）</td>
<td>17.2</td>
<td>82.8</td>
<td>3.0〜3.5</td>
<td>1.47（10.15）</td>
<td></td>
</tr>
<tr>
<td>1.0〜1.2</td>
<td>1.26（8.67）</td>
<td>8.6</td>
<td>91.4</td>
<td>3.5〜4.0</td>
<td>1.20（8.29）</td>
<td></td>
</tr>
<tr>
<td>1.2〜1.4</td>
<td>1.02（7.05）</td>
<td>4.3</td>
<td>95.7</td>
<td>4.0〜4.5</td>
<td>1.01（6.95）</td>
<td></td>
</tr>
</tbody>
</table>
付録

表C-33 1キロトンの核兵器の地表爆発での「屋内—木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
</tr>
<tr>
<td>0.1–0.2</td>
<td>24.65 (169.92)</td>
<td>99.0</td>
<td>1.0</td>
<td></td>
<td>0–0.5</td>
</tr>
<tr>
<td>0.2–0.3</td>
<td>10.85 (74.81)</td>
<td>75.0</td>
<td>23.0</td>
<td>2.0</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>0.3–0.4</td>
<td>6.47 (44.62)</td>
<td>6.0</td>
<td>70.0</td>
<td>24.0</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>0.4–0.5</td>
<td>4.48 (30.86)</td>
<td>1.0</td>
<td>65.7</td>
<td>33.3</td>
<td>*2</td>
</tr>
<tr>
<td>0.5–0.7</td>
<td>2.68 (18.45)</td>
<td>1.0</td>
<td>65.7</td>
<td>33.3</td>
<td>2.0–2.5</td>
</tr>
<tr>
<td>0.7–0.9</td>
<td>1.87 (12.87)</td>
<td>57.7</td>
<td>42.3</td>
<td>2.3</td>
<td>2.5–3.0</td>
</tr>
<tr>
<td>0.9–1.0</td>
<td>1.61 (11.12)</td>
<td>35.7</td>
<td>64.3</td>
<td>3.0–3.5</td>
<td>1.47 (10.15)</td>
</tr>
<tr>
<td>1.0–1.2</td>
<td>1.26 (8.67)</td>
<td>30.4</td>
<td>69.6</td>
<td>3.5–4.0</td>
<td>1.20 (8.29)</td>
</tr>
<tr>
<td>1.2–1.4</td>
<td>1.02 (7.05)</td>
<td>20.3</td>
<td>79.7</td>
<td>4.0–4.5</td>
<td>1.01 (6.95)</td>
</tr>
</tbody>
</table>

※1 大規模火災は0.3kmまで想定しているため、大規模火災に見舞われると想定した16キロトンの空中爆発の1.0～1.5kmの死傷率をそのまま適用するのは妥当ではない。このため爆風の強さも考慮し、1.5～2.0kmの死傷率を適用した。

※2 同様の理由から、1.5～2.0kmの空中爆発の死傷率ではなく、2.0～2.5kmの死傷率を適用した。

表C-34 1キロトンの核兵器の地表爆発での「屋内—非木造」急性期死傷率の設定

<table>
<thead>
<tr>
<th>地上距離</th>
<th>過圧</th>
<th>死亡</th>
<th>負傷</th>
<th>無傷</th>
<th>適用した16キロトンの空中爆発の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>psi (kPa)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>km</td>
</tr>
<tr>
<td>0.1–0.2</td>
<td>24.65 (169.92)</td>
<td>91.0</td>
<td>7.0</td>
<td>2.0</td>
<td>0–0.5</td>
</tr>
<tr>
<td>0.2–0.3</td>
<td>10.85 (74.81)</td>
<td>27.0</td>
<td>35.0</td>
<td>38.0</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>0.3–0.4</td>
<td>6.47 (44.62)</td>
<td>1.0</td>
<td>49.0</td>
<td>50.0</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>0.4–0.5</td>
<td>4.48 (30.86)</td>
<td>42.0</td>
<td>58.0</td>
<td></td>
<td>*2</td>
</tr>
<tr>
<td>0.5–0.7</td>
<td>2.68 (18.45)</td>
<td>42.0</td>
<td>58.0</td>
<td>2.0–2.5</td>
<td>2.49 (17.16)</td>
</tr>
<tr>
<td>0.7–0.9</td>
<td>1.87 (12.87)</td>
<td>35.7</td>
<td>64.3</td>
<td>2.5–3.0</td>
<td>1.87 (12.88)</td>
</tr>
<tr>
<td>0.9–1.0</td>
<td>1.61 (11.12)</td>
<td>30.4</td>
<td>69.6</td>
<td>3.0–3.5</td>
<td>1.47 (10.15)</td>
</tr>
<tr>
<td>1.0–1.2</td>
<td>1.26 (8.67)</td>
<td>20.3</td>
<td>79.7</td>
<td>3.5–4.0</td>
<td>1.20 (8.29)</td>
</tr>
<tr>
<td>1.2–1.4</td>
<td>1.02 (7.05)</td>
<td>12.3</td>
<td>87.7</td>
<td>4.0–4.5</td>
<td>1.01 (6.95)</td>
</tr>
</tbody>
</table>

※1及び※2とも「屋内—木造」に同じ。
付録C 死傷者推計の方法について

① 試算結果
上記の死傷率を適用して試算した死傷者数及び過去の被害想定事例等での死傷率を適用して試算した死傷者数を表C－35に示す。

表C－35 1キロトンの核兵器の地表爆発における推計死傷者数（急性期）の比較（残留放射線の影響を除く）

<table>
<thead>
<tr>
<th>適用死傷率</th>
<th>試算値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>被災人口</td>
</tr>
<tr>
<td>Superfire -10cal/cm²</td>
<td>176,206</td>
</tr>
<tr>
<td>Superfire -25cal/cm²</td>
<td>(1.4km 圏)</td>
</tr>
<tr>
<td>OTA</td>
<td>15,519</td>
</tr>
<tr>
<td>今回設定した死傷率</td>
<td>10,151</td>
</tr>
</tbody>
</table>

ただし、上記の死傷者数は、初期放射線、爆風及び熱線並びにその後の火炎の影響のみを考慮したものであり、最終的な死傷者数を試算するためには、これに放射性降下物の影響を加味しなければならない。

そこで、ここでは、16キロトンの核兵器の地表爆発の場合のシミュレーション条件を次のとおり一部変更して同様のシミュレーションを行い、上記の死傷者数の試算値を修正するとともに、生存者における後障害の過剰発症数を試算した。

・放射能の降下範囲を1km（設定理由は16キロトンの場合に同じ）に変更
・脱出に要する時間を平均20分に変更

3つのパターンにおける被爆線量を表C－36に示すとともに、シミュレーションの結果を表C－37及びC－38に示す。

表C－36 1キロトンの核兵器の地表爆発において、半径1kmに放射性降下物が一様に堆積したと仮定した場合の脱出時ガンマ線量

<table>
<thead>
<tr>
<th>区域</th>
<th>脱出時の被爆線量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>爆発直後に脱出</td>
</tr>
<tr>
<td>1km 圏</td>
<td>49.7Sv</td>
</tr>
</tbody>
</table>

※値は付録D表D－8の値の6割である。また、この値は塔の上昇や輸送、降下に関する時間を考慮していない。（爆発後直ちに地表に堆積）

113
表C－37 1キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく急性期の死傷者数の試算結果

<table>
<thead>
<tr>
<th>適用死傷率</th>
<th>試算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>被災人口</td>
<td>死亡</td>
</tr>
<tr>
<td>今回設定した死傷率 + 放射性降下物の影響</td>
<td>176,206人（1.4km圏）</td>
</tr>
<tr>
<td>直後</td>
<td>100,428人</td>
</tr>
<tr>
<td>1時間</td>
<td>55,503人</td>
</tr>
<tr>
<td>7時間</td>
<td>10,151人</td>
</tr>
</tbody>
</table>

※表C－35の死傷者数に放射性降下物の影響を加味した値である。直後に脱出した場合、放射性降下物の影響を受けると仮定した半径1km圏では全員が死亡する。

表C－38 1キロトンの核兵器の地表爆発における放射性降下物の影響に関するシミュレーションに基づく後障害発症数の試算結果（2. 2km圏）
（直後に脱出した場合）

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>生存者数（人）</th>
<th>後障害（白血病・がんの過剰発症数）</th>
<th>確率</th>
<th>発症数（人）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2以上3Sv未満</td>
<td>639</td>
<td>16.5/1000</td>
<td>150/1000</td>
<td>10</td>
</tr>
<tr>
<td>0.5以上2Sv未満</td>
<td>1,020</td>
<td>11/1000</td>
<td>100/1000</td>
<td>11</td>
</tr>
<tr>
<td>0.01以上0.25Sv未満</td>
<td>2,618</td>
<td>1.1/1000</td>
<td>10/1000</td>
<td>2</td>
</tr>
<tr>
<td>計</td>
<td>4,277</td>
<td>—</td>
<td>—</td>
<td>23</td>
</tr>
</tbody>
</table>

（1時間後に脱出した場合）

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>生存者数（人）</th>
<th>後障害（白血病・がんの過剰発症数）</th>
<th>確率</th>
<th>発症数（人）</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Sv以上</td>
<td>44,925</td>
<td>33/1000</td>
<td>300/1000</td>
<td>1,482</td>
</tr>
<tr>
<td>2以上3Sv未満</td>
<td>639</td>
<td>16.5/1000</td>
<td>150/1000</td>
<td>10</td>
</tr>
<tr>
<td>0.5以上2Sv未満</td>
<td>1,020</td>
<td>11/1000</td>
<td>100/1000</td>
<td>11</td>
</tr>
<tr>
<td>0.01以上0.25Sv未満</td>
<td>2,618</td>
<td>1.1/1000</td>
<td>10/1000</td>
<td>2</td>
</tr>
<tr>
<td>計</td>
<td>49,202</td>
<td>—</td>
<td>—</td>
<td>1,505</td>
</tr>
</tbody>
</table>

（7時間後に脱出した場合）

<table>
<thead>
<tr>
<th>被曝線量</th>
<th>生存者数（人）</th>
<th>後障害（白血病・がんの過剰発症数）</th>
<th>確率</th>
<th>発症数（人）</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Sv以上</td>
<td>422</td>
<td>33/1000</td>
<td>300/1000</td>
<td>13</td>
</tr>
<tr>
<td>2以上3Sv未満</td>
<td>639</td>
<td>16.5/1000</td>
<td>150/1000</td>
<td>10</td>
</tr>
<tr>
<td>0.5以上2Sv未満</td>
<td>90,875</td>
<td>11/1000</td>
<td>100/1000</td>
<td>999</td>
</tr>
<tr>
<td>0.01以上0.25Sv未満</td>
<td>2,618</td>
<td>1.1/1000</td>
<td>10/1000</td>
<td>2</td>
</tr>
<tr>
<td>計</td>
<td>94,554</td>
<td>—</td>
<td>—</td>
<td>1,024</td>
</tr>
</tbody>
</table>
付録Ｄ 放射線、爆風及び熱線に関する試算値等

付録Ｄ 放射線、爆風及び熱線に関する試算値等

表D－1 16キロトンの核兵器の空中爆発（爆発高度600m）での初期放射線

<table>
<thead>
<tr>
<th>地上距離(m)</th>
<th>遮蔽なし</th>
<th>遮蔽あり</th>
<th>遮蔽あり</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中性子 Gy</td>
<td>ガンマ線 Gy</td>
<td>計 Gy Sv</td>
</tr>
<tr>
<td>100</td>
<td>32.000</td>
<td>115.000</td>
<td>147.000</td>
</tr>
<tr>
<td>200</td>
<td>25.100</td>
<td>95.600</td>
<td>120.700</td>
</tr>
<tr>
<td>300</td>
<td>17.500</td>
<td>73.000</td>
<td>90.500</td>
</tr>
<tr>
<td>400</td>
<td>11.100</td>
<td>52.700</td>
<td>63.800</td>
</tr>
<tr>
<td>500</td>
<td>6.480</td>
<td>35.700</td>
<td>42.180</td>
</tr>
<tr>
<td>600</td>
<td>3.610</td>
<td>23.600</td>
<td>27.210</td>
</tr>
<tr>
<td>700</td>
<td>1.950</td>
<td>15.500</td>
<td>17.450</td>
</tr>
<tr>
<td>800</td>
<td>0.996</td>
<td>10.000</td>
<td>10.996</td>
</tr>
<tr>
<td>900</td>
<td>0.517</td>
<td>6.470</td>
<td>6.987</td>
</tr>
<tr>
<td>1,000</td>
<td>0.260</td>
<td>4.220</td>
<td>4.480</td>
</tr>
<tr>
<td>1,100</td>
<td>0.129</td>
<td>2.750</td>
<td>2.879</td>
</tr>
<tr>
<td>1,200</td>
<td>0.067</td>
<td>1.810</td>
<td>1.877</td>
</tr>
<tr>
<td>1,300</td>
<td>0.034</td>
<td>1.190</td>
<td>1.224</td>
</tr>
<tr>
<td>1,400</td>
<td>0.017</td>
<td>0.789</td>
<td>0.806</td>
</tr>
<tr>
<td>1,500</td>
<td>0.009</td>
<td>0.527</td>
<td>0.536</td>
</tr>
<tr>
<td>1,600</td>
<td>0.005</td>
<td>0.353</td>
<td>0.358</td>
</tr>
<tr>
<td>1,700</td>
<td>0.002</td>
<td>0.237</td>
<td>0.239</td>
</tr>
<tr>
<td>1,800</td>
<td>0.001</td>
<td>0.165</td>
<td>0.166</td>
</tr>
<tr>
<td>1,900</td>
<td>0.001</td>
<td>0.110</td>
<td>0.111</td>
</tr>
<tr>
<td>2,000</td>
<td>0.000</td>
<td>0.076</td>
<td>0.077</td>
</tr>
<tr>
<td>2,100</td>
<td>0.000</td>
<td>0.052</td>
<td>0.053</td>
</tr>
<tr>
<td>2,200</td>
<td>0.000</td>
<td>0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>2,300</td>
<td>0.000</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>2,400</td>
<td>0.000</td>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>2,500</td>
<td>0.000</td>
<td>0.013</td>
<td>0.013</td>
</tr>
</tbody>
</table>

※参考文献[42]の値を基に、中性子線の放射線荷重係数を10とし、付録C表C－2の遮蔽係数を用いて求めた値である。
<table>
<thead>
<tr>
<th>地上距離 (m)</th>
<th>中性子 (Gy)</th>
<th>ガンマ線 (Gy)</th>
<th>計 (Gy)</th>
<th>屋外 (Sv)</th>
<th>屋内 (Sv)</th>
<th>木造 (Sv)</th>
<th>非木造 (Sv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.700</td>
<td>8.400</td>
<td>9.100</td>
<td>15.400</td>
<td>0.049</td>
<td>7.560</td>
<td>0.238</td>
</tr>
<tr>
<td>200</td>
<td>0.650</td>
<td>8.050</td>
<td>8.700</td>
<td>14.550</td>
<td>0.047</td>
<td>7.120</td>
<td>0.226</td>
</tr>
<tr>
<td>300</td>
<td>0.600</td>
<td>7.700</td>
<td>8.300</td>
<td>13.700</td>
<td>0.045</td>
<td>6.680</td>
<td>0.214</td>
</tr>
<tr>
<td>400</td>
<td>0.550</td>
<td>7.100</td>
<td>7.650</td>
<td>12.600</td>
<td>0.041</td>
<td>6.140</td>
<td>0.197</td>
</tr>
<tr>
<td>500</td>
<td>0.500</td>
<td>6.500</td>
<td>7.000</td>
<td>11.500</td>
<td>0.038</td>
<td>5.600</td>
<td>0.180</td>
</tr>
<tr>
<td>600</td>
<td>0.440</td>
<td>6.150</td>
<td>6.590</td>
<td>10.550</td>
<td>0.035</td>
<td>5.100</td>
<td>0.167</td>
</tr>
<tr>
<td>700</td>
<td>0.390</td>
<td>5.700</td>
<td>6.090</td>
<td>9.600</td>
<td>0.032</td>
<td>4.620</td>
<td>0.153</td>
</tr>
<tr>
<td>800</td>
<td>0.330</td>
<td>5.250</td>
<td>5.580</td>
<td>8.550</td>
<td>0.030</td>
<td>4.080</td>
<td>0.138</td>
</tr>
<tr>
<td>900</td>
<td>0.270</td>
<td>4.900</td>
<td>5.170</td>
<td>7.600</td>
<td>0.027</td>
<td>3.580</td>
<td>0.125</td>
</tr>
<tr>
<td>1,000</td>
<td>0.200</td>
<td>4.550</td>
<td>4.750</td>
<td>6.550</td>
<td>0.025</td>
<td>3.020</td>
<td>0.111</td>
</tr>
<tr>
<td>1,100</td>
<td>0.150</td>
<td>4.200</td>
<td>4.350</td>
<td>5.700</td>
<td>0.023</td>
<td>2.580</td>
<td>0.099</td>
</tr>
<tr>
<td>1,200</td>
<td>0.130</td>
<td>3.600</td>
<td>3.730</td>
<td>4.900</td>
<td>0.019</td>
<td>2.220</td>
<td>0.085</td>
</tr>
<tr>
<td>1,300</td>
<td>0.100</td>
<td>3.000</td>
<td>3.100</td>
<td>4.000</td>
<td>0.016</td>
<td>1.800</td>
<td>0.070</td>
</tr>
<tr>
<td>1,400</td>
<td>0.090</td>
<td>2.450</td>
<td>2.540</td>
<td>3.350</td>
<td>0.013</td>
<td>1.520</td>
<td>0.058</td>
</tr>
<tr>
<td>1,500</td>
<td>0.070</td>
<td>1.900</td>
<td>1.970</td>
<td>2.600</td>
<td>0.010</td>
<td>1.180</td>
<td>0.045</td>
</tr>
<tr>
<td>1,600</td>
<td>0.050</td>
<td>1.650</td>
<td>1.700</td>
<td>2.150</td>
<td>0.009</td>
<td>0.960</td>
<td>0.038</td>
</tr>
<tr>
<td>1,700</td>
<td>0.040</td>
<td>1.320</td>
<td>1.360</td>
<td>1.720</td>
<td>0.007</td>
<td>0.768</td>
<td>0.030</td>
</tr>
<tr>
<td>1,800</td>
<td>0.030</td>
<td>1.030</td>
<td>1.060</td>
<td>1.330</td>
<td>0.005</td>
<td>0.592</td>
<td>0.024</td>
</tr>
<tr>
<td>1,900</td>
<td>0.020</td>
<td>0.840</td>
<td>0.860</td>
<td>1.040</td>
<td>0.004</td>
<td>0.456</td>
<td>0.019</td>
</tr>
<tr>
<td>2,000</td>
<td>0.015</td>
<td>0.610</td>
<td>0.625</td>
<td>0.760</td>
<td>0.003</td>
<td>0.334</td>
<td>0.014</td>
</tr>
<tr>
<td>2,100</td>
<td>0.010</td>
<td>0.500</td>
<td>0.510</td>
<td>0.600</td>
<td>0.003</td>
<td>0.260</td>
<td>0.011</td>
</tr>
<tr>
<td>2,200</td>
<td>0.009</td>
<td>0.405</td>
<td>0.414</td>
<td>0.495</td>
<td>0.002</td>
<td>0.216</td>
<td>0.009</td>
</tr>
<tr>
<td>2,300</td>
<td>0.006</td>
<td>0.315</td>
<td>0.321</td>
<td>0.375</td>
<td>0.002</td>
<td>0.162</td>
<td>0.007</td>
</tr>
<tr>
<td>2,400</td>
<td>0.004</td>
<td>0.225</td>
<td>0.229</td>
<td>0.265</td>
<td>0.001</td>
<td>0.114</td>
<td>0.005</td>
</tr>
<tr>
<td>2,500</td>
<td>0.002</td>
<td>0.150</td>
<td>0.152</td>
<td>0.172</td>
<td>0.001</td>
<td>0.073</td>
<td>0.003</td>
</tr>
<tr>
<td>2,600</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.000</td>
<td>0.030</td>
<td>0.002</td>
</tr>
<tr>
<td>2,700</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.050</td>
<td>0.000</td>
<td>0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>2,800</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.000</td>
<td>0.018</td>
<td>0.001</td>
</tr>
<tr>
<td>2,900</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
<td>0.000</td>
<td>0.016</td>
<td>0.001</td>
</tr>
<tr>
<td>3,000</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.000</td>
<td>0.014</td>
<td>0.001</td>
</tr>
</tbody>
</table>

※参考文献[31]記載の方法により求めた値を基に、中性子線の放射線荷重係数を10とし、付録C表C-2の遮蔽係数を用いて求めた値である。
表D-3 16キロトンの核兵器の地表爆発（爆発高度1m）での初期放射線

<table>
<thead>
<tr>
<th>地上距離 (m)</th>
<th>中性子</th>
<th>ガンマ線</th>
<th>計</th>
<th>遮蔽あり</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>4,000.000</td>
<td>1,920.000</td>
<td>5,920.000</td>
<td>41,920.000</td>
</tr>
<tr>
<td>400</td>
<td>1,440.000</td>
<td>400.000</td>
<td>1,840.000</td>
<td>14,800.000</td>
</tr>
<tr>
<td>500</td>
<td>640.000</td>
<td>318.000</td>
<td>958.000</td>
<td>6,718.000</td>
</tr>
<tr>
<td>600</td>
<td>320.000</td>
<td>189.000</td>
<td>509.000</td>
<td>3,389.000</td>
</tr>
<tr>
<td>700</td>
<td>136.000</td>
<td>90.000</td>
<td>226.000</td>
<td>1,450.000</td>
</tr>
<tr>
<td>800</td>
<td>56.000</td>
<td>59.000</td>
<td>115.000</td>
<td>619.000</td>
</tr>
<tr>
<td>900</td>
<td>32.000</td>
<td>44.400</td>
<td>76.400</td>
<td>364.400</td>
</tr>
<tr>
<td>1,000</td>
<td>16.000</td>
<td>26.100</td>
<td>42.100</td>
<td>186.100</td>
</tr>
<tr>
<td>1,100</td>
<td>8.000</td>
<td>18.500</td>
<td>26.500</td>
<td>98.500</td>
</tr>
<tr>
<td>1,200</td>
<td>3.200</td>
<td>7.700</td>
<td>10.900</td>
<td>39.700</td>
</tr>
<tr>
<td>1,300</td>
<td>1.680</td>
<td>5.360</td>
<td>7.040</td>
<td>22.160</td>
</tr>
<tr>
<td>1,400</td>
<td>0.960</td>
<td>3.530</td>
<td>4.490</td>
<td>13.130</td>
</tr>
<tr>
<td>1,500</td>
<td>0.520</td>
<td>2.300</td>
<td>2.820</td>
<td>7.500</td>
</tr>
<tr>
<td>1,600</td>
<td>0.360</td>
<td>1.300</td>
<td>1.660</td>
<td>4.900</td>
</tr>
<tr>
<td>1,700</td>
<td>0.200</td>
<td>0.864</td>
<td>1.064</td>
<td>2.864</td>
</tr>
<tr>
<td>1,800</td>
<td>0.096</td>
<td>0.544</td>
<td>0.640</td>
<td>1.504</td>
</tr>
<tr>
<td>1,900</td>
<td>0.064</td>
<td>0.400</td>
<td>0.464</td>
<td>1.040</td>
</tr>
<tr>
<td>2,000</td>
<td>0.040</td>
<td>0.270</td>
<td>0.310</td>
<td>0.670</td>
</tr>
<tr>
<td>2,100</td>
<td>0.024</td>
<td>0.154</td>
<td>0.178</td>
<td>0.394</td>
</tr>
<tr>
<td>2,200</td>
<td>0.011</td>
<td>0.085</td>
<td>0.096</td>
<td>0.197</td>
</tr>
<tr>
<td>2,300</td>
<td>0.006</td>
<td>0.054</td>
<td>0.061</td>
<td>0.118</td>
</tr>
<tr>
<td>2,400</td>
<td>0.004</td>
<td>0.039</td>
<td>0.043</td>
<td>0.083</td>
</tr>
<tr>
<td>2,500</td>
<td>0.003</td>
<td>0.028</td>
<td>0.031</td>
<td>0.055</td>
</tr>
<tr>
<td>2,600</td>
<td>0.002</td>
<td>0.017</td>
<td>0.019</td>
<td>0.033</td>
</tr>
<tr>
<td>2,700</td>
<td>0.001</td>
<td>0.012</td>
<td>0.013</td>
<td>0.021</td>
</tr>
<tr>
<td>2,800</td>
<td>0.001</td>
<td>0.008</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>2,900</td>
<td>0.000</td>
<td>0.006</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>3,000</td>
<td>0.000</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
</tr>
</tbody>
</table>

※参考文献[31]記載の方法により求めた値を基に、中性子線の放射線荷重係数を10とし、付録C表C-2の遮蔽係数を用いて求めた値である。200m以内は火球に呑み込まれるものとして計算していない。
付録

表D-4 1キロトンの核兵器の地表爆発（爆発高度1m）での初期放射線

<table>
<thead>
<tr>
<th>地上 距離 m</th>
<th>中性子 Gy</th>
<th>ガンマ線 Gy</th>
<th>計 Sv</th>
<th>遮蔽あり Sv</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1,000.000</td>
<td>450.000</td>
<td>1,450.000</td>
<td>10,450.000</td>
</tr>
<tr>
<td>300</td>
<td>225.000</td>
<td>50.000</td>
<td>275.000</td>
<td>2,300.000</td>
</tr>
<tr>
<td>400</td>
<td>75.000</td>
<td>37.500</td>
<td>112.500</td>
<td>787.500</td>
</tr>
<tr>
<td>500</td>
<td>50.000</td>
<td>17.500</td>
<td>67.500</td>
<td>517.500</td>
</tr>
<tr>
<td>600</td>
<td>20.000</td>
<td>11.000</td>
<td>31.000</td>
<td>211.000</td>
</tr>
<tr>
<td>700</td>
<td>12.000</td>
<td>5.750</td>
<td>17.750</td>
<td>125.750</td>
</tr>
<tr>
<td>800</td>
<td>5.000</td>
<td>3.000</td>
<td>8.000</td>
<td>53.000</td>
</tr>
<tr>
<td>900</td>
<td>1.750</td>
<td>1.900</td>
<td>3.650</td>
<td>19.400</td>
</tr>
<tr>
<td>1,000</td>
<td>1.100</td>
<td>1.100</td>
<td>2.200</td>
<td>12.100</td>
</tr>
<tr>
<td>1,100</td>
<td>0.750</td>
<td>0.700</td>
<td>1.450</td>
<td>8.200</td>
</tr>
<tr>
<td>1,200</td>
<td>0.200</td>
<td>0.325</td>
<td>0.525</td>
<td>2.325</td>
</tr>
<tr>
<td>1,300</td>
<td>0.100</td>
<td>0.225</td>
<td>0.325</td>
<td>1.225</td>
</tr>
<tr>
<td>1,400</td>
<td>0.070</td>
<td>0.140</td>
<td>0.210</td>
<td>0.840</td>
</tr>
<tr>
<td>1,500</td>
<td>0.040</td>
<td>0.100</td>
<td>0.140</td>
<td>0.500</td>
</tr>
<tr>
<td>1,600</td>
<td>0.018</td>
<td>0.060</td>
<td>0.078</td>
<td>0.235</td>
</tr>
<tr>
<td>1,700</td>
<td>0.009</td>
<td>0.040</td>
<td>0.049</td>
<td>0.130</td>
</tr>
<tr>
<td>1,800</td>
<td>0.005</td>
<td>0.025</td>
<td>0.030</td>
<td>0.075</td>
</tr>
<tr>
<td>1,900</td>
<td>0.003</td>
<td>0.017</td>
<td>0.020</td>
<td>0.047</td>
</tr>
<tr>
<td>2,000</td>
<td>0.002</td>
<td>0.011</td>
<td>0.013</td>
<td>0.031</td>
</tr>
<tr>
<td>2,100</td>
<td>0.001</td>
<td>0.006</td>
<td>0.007</td>
<td>0.016</td>
</tr>
<tr>
<td>2,200</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
<td>0.011</td>
</tr>
</tbody>
</table>

※参考文献[31]記載の方法により求めた値を基に、中性子線の放射線荷重係数を10として、付録C表C-2の遮蔽係数を用いて求めた値である。100m以内は火球に呑み込まれるものとして計算していない。
表D-5 16キロトンの核兵器の地表爆発（爆発高度1m）から発生した放射性降下物の塵の半分が半径3kmに一様に拡散した場合の地表1mの高さでの残留放射線（Sv）

<table>
<thead>
<tr>
<th>区 分</th>
<th>潜在時間</th>
<th>～1 時間</th>
<th>～3 時間</th>
<th>～6 時間</th>
<th>～12 時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガンマ線</td>
<td>1 分後～</td>
<td>189.440</td>
<td>231.538</td>
<td>257.849</td>
<td>294.684</td>
</tr>
<tr>
<td></td>
<td>1 時間後～</td>
<td>28.416</td>
<td>52.622</td>
<td>74.724</td>
<td>101.035</td>
</tr>
<tr>
<td></td>
<td>2 時間後～</td>
<td>15.524</td>
<td>35.046</td>
<td>52.622</td>
<td>74.724</td>
</tr>
<tr>
<td></td>
<td>3 時間後～</td>
<td>10.893</td>
<td>26.416</td>
<td>42.098</td>
<td>63.147</td>
</tr>
<tr>
<td></td>
<td>6 時間後～</td>
<td>5.788</td>
<td>15.260</td>
<td>26.311</td>
<td>42.098</td>
</tr>
<tr>
<td></td>
<td>12 時間後～</td>
<td>3.052</td>
<td>8.420</td>
<td>15.260</td>
<td>26.311</td>
</tr>
<tr>
<td></td>
<td>2 日目～</td>
<td>1.526</td>
<td>4.368</td>
<td>8.420</td>
<td>14.734</td>
</tr>
<tr>
<td></td>
<td>3 日目～</td>
<td>0.737</td>
<td>2.158</td>
<td>4.210</td>
<td>7.893</td>
</tr>
<tr>
<td></td>
<td>4 日目～</td>
<td>0.489</td>
<td>1.473</td>
<td>2.842</td>
<td>5.262</td>
</tr>
<tr>
<td></td>
<td>5 日目～</td>
<td>0.363</td>
<td>1.052</td>
<td>2.105</td>
<td>4.105</td>
</tr>
<tr>
<td></td>
<td>6 日目～</td>
<td>0.274</td>
<td>0.842</td>
<td>1.579</td>
<td>3.105</td>
</tr>
<tr>
<td></td>
<td>7 日目～</td>
<td>0.200</td>
<td>0.579</td>
<td>1.158</td>
<td>2.158</td>
</tr>
<tr>
<td></td>
<td>8 日目～</td>
<td>0.121</td>
<td>0.353</td>
<td>0.684</td>
<td>1.263</td>
</tr>
<tr>
<td></td>
<td>1 月後～</td>
<td>0.007</td>
<td>0.020</td>
<td>0.040</td>
<td>0.079</td>
</tr>
<tr>
<td>ペータ線</td>
<td>1 分後～</td>
<td>2,704.782</td>
<td>3,031.040</td>
<td>3,162.596</td>
<td>3,283.627</td>
</tr>
<tr>
<td></td>
<td>1 時間後～</td>
<td>213.646</td>
<td>405.191</td>
<td>556.743</td>
<td>688.299</td>
</tr>
<tr>
<td></td>
<td>2 時間後～</td>
<td>116.032</td>
<td>249.114</td>
<td>363.093</td>
<td>504.121</td>
</tr>
<tr>
<td></td>
<td>3 時間後～</td>
<td>78.565</td>
<td>178.810</td>
<td>278.898</td>
<td>389.404</td>
</tr>
<tr>
<td></td>
<td>6 時間後～</td>
<td>37.362</td>
<td>95.246</td>
<td>178.916</td>
<td>247.324</td>
</tr>
<tr>
<td></td>
<td>12 時間後～</td>
<td>17.471</td>
<td>49.465</td>
<td>84.722</td>
<td>142.080</td>
</tr>
<tr>
<td></td>
<td>2 日目～</td>
<td>7.946</td>
<td>22.996</td>
<td>42.624</td>
<td>74.724</td>
</tr>
<tr>
<td></td>
<td>3 日目～</td>
<td>3.578</td>
<td>10.472</td>
<td>20.523</td>
<td>38.414</td>
</tr>
<tr>
<td></td>
<td>4 日目～</td>
<td>2.247</td>
<td>6.420</td>
<td>12.945</td>
<td>24.732</td>
</tr>
<tr>
<td></td>
<td>5 日目～</td>
<td>1.584</td>
<td>4.736</td>
<td>9.472</td>
<td>17.997</td>
</tr>
<tr>
<td></td>
<td>6 日目～</td>
<td>1.252</td>
<td>3.631</td>
<td>7.367</td>
<td>14.261</td>
</tr>
<tr>
<td></td>
<td>7 日目～</td>
<td>1.010</td>
<td>2.999</td>
<td>5.683</td>
<td>11.524</td>
</tr>
<tr>
<td></td>
<td>8 日目～</td>
<td>0.826</td>
<td>2.542</td>
<td>5.104</td>
<td>9.788</td>
</tr>
<tr>
<td></td>
<td>1 月後～</td>
<td>0.135</td>
<td>0.412</td>
<td>0.802</td>
<td>1.658</td>
</tr>
</tbody>
</table>

※参考文献[42]の長崎原爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を浴びて放射化する地上の物質を独自に試算して得た値である。なお、放射能を有する塵の上昇、輸送及び降下に要する時間は考慮していない。つまり爆発1分後には地表に堆積しているものとして計算した値である。
付 録

表D-6 16キロトンの核兵器の地表爆発（爆発高度1m）から発生した放射性降下物の塵の半分が半径3kmに一様に拡散して皮膚に付着した場合の線量（Sv）

<table>
<thead>
<tr>
<th>区 分</th>
<th>滞在時間</th>
<th>~1時間</th>
<th>~3時間</th>
<th>~6時間</th>
<th>~12時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガンマ線及びベータ線</td>
<td>1分後～</td>
<td>30.636</td>
<td>36.630</td>
<td>39.294</td>
<td>41.958</td>
</tr>
<tr>
<td></td>
<td>1時間後～</td>
<td>7.193</td>
<td>6.660</td>
<td>9.324</td>
<td>11.988</td>
</tr>
<tr>
<td></td>
<td>2時間後～</td>
<td>3.863</td>
<td>4.262</td>
<td>6.260</td>
<td>8.658</td>
</tr>
<tr>
<td></td>
<td>3時間後～</td>
<td>2.664</td>
<td>3.064</td>
<td>4.795</td>
<td>6.660</td>
</tr>
<tr>
<td></td>
<td>6時間後～</td>
<td>1.292</td>
<td>1.665</td>
<td>2.797</td>
<td>4.329</td>
</tr>
<tr>
<td></td>
<td>12時間後～</td>
<td>0.613</td>
<td>0.866</td>
<td>1.532</td>
<td>2.597</td>
</tr>
<tr>
<td></td>
<td>2日目～</td>
<td>0.293</td>
<td>0.413</td>
<td>0.799</td>
<td>1.399</td>
</tr>
<tr>
<td></td>
<td>3日目～</td>
<td>0.133</td>
<td>0.200</td>
<td>0.386</td>
<td>0.733</td>
</tr>
<tr>
<td></td>
<td>4日目～</td>
<td>0.087</td>
<td>0.127</td>
<td>0.253</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>5日目～</td>
<td>0.064</td>
<td>0.093</td>
<td>0.186</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>6日目～</td>
<td>0.049</td>
<td>0.073</td>
<td>0.147</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>7日目～</td>
<td>0.040</td>
<td>0.060</td>
<td>0.120</td>
<td>0.233</td>
</tr>
<tr>
<td></td>
<td>8日目～</td>
<td>0.033</td>
<td>0.049</td>
<td>0.100</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>1月後～</td>
<td>0.006</td>
<td>0.009</td>
<td>0.009</td>
<td>0.033</td>
</tr>
</tbody>
</table>

※参考文献[42]の長崎原爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を遮て放射化する地上の物質を独自に試算して得た値である。なお、線量は、表面に塵が厚さ20μm付着したときの、ICRU球の表面から70μmのところでのものである。

放射線場中にある人体を模擬するために国際放射線単位測定委員会（ICRU）が定めた、直径30cmの人体組織等価物質の球である。
付録D 放射線、爆風及び熱線に関する試算値等

表D-7 16キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径110mのクレーターに降下した場合の地表1mの高さでの残留放射線（Sv）

<table>
<thead>
<tr>
<th>区 分</th>
<th>滞在時間</th>
<th>～1 時間</th>
<th>～3 時間</th>
<th>～6 時間</th>
<th>～12 時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガンマ線</td>
<td>1 分後～</td>
<td>140,905.785</td>
<td>172,218.182</td>
<td>191,788.430</td>
<td>219,186.777</td>
</tr>
<tr>
<td></td>
<td>1 時間後～</td>
<td>21,135.868</td>
<td>39,140.496</td>
<td>55,579.504</td>
<td>75,149.752</td>
</tr>
<tr>
<td></td>
<td>2 時間後～</td>
<td>11,546.446</td>
<td>26,067.570</td>
<td>39,140.496</td>
<td>55,579.504</td>
</tr>
<tr>
<td></td>
<td>3 時間後～</td>
<td>8,102.083</td>
<td>19,648.529</td>
<td>31,312.397</td>
<td>46,968.595</td>
</tr>
<tr>
<td></td>
<td>6 時間後～</td>
<td>4,305.455</td>
<td>11,350.744</td>
<td>19,570.248</td>
<td>31,312.397</td>
</tr>
<tr>
<td></td>
<td>12 時間後～</td>
<td>2,270.149</td>
<td>6,262.479</td>
<td>11,350.744</td>
<td>19,570.248</td>
</tr>
<tr>
<td></td>
<td>2 日目～</td>
<td>1,135.074</td>
<td>3,248.661</td>
<td>6,262.479</td>
<td>10,959.339</td>
</tr>
<tr>
<td></td>
<td>3 日目～</td>
<td>547.967</td>
<td>1,604.760</td>
<td>3,131.240</td>
<td>5,871.074</td>
</tr>
<tr>
<td></td>
<td>4 日目～</td>
<td>364.007</td>
<td>1,095.934</td>
<td>2,113.587</td>
<td>3,914.050</td>
</tr>
<tr>
<td></td>
<td>5 日目～</td>
<td>270.069</td>
<td>782.810</td>
<td>1,565.620</td>
<td>3,052.959</td>
</tr>
<tr>
<td></td>
<td>6 日目～</td>
<td>203.531</td>
<td>626.248</td>
<td>1,174.215</td>
<td>2,309.289</td>
</tr>
<tr>
<td></td>
<td>7 日目～</td>
<td>148.734</td>
<td>430.545</td>
<td>861.091</td>
<td>1,604.760</td>
</tr>
<tr>
<td></td>
<td>8 日目～</td>
<td>90.023</td>
<td>262.241</td>
<td>508.826</td>
<td>939.372</td>
</tr>
<tr>
<td></td>
<td>1 月後～</td>
<td>5.088</td>
<td>14.873</td>
<td>29.747</td>
<td>58.711</td>
</tr>
<tr>
<td>ベータ線</td>
<td>1 分後～</td>
<td>2,011,821.488</td>
<td>2,254,492.562</td>
<td>2,352,343.802</td>
<td>2,442,366.942</td>
</tr>
<tr>
<td></td>
<td>1 時間後～</td>
<td>158,910.413</td>
<td>301,381.818</td>
<td>414,106.446</td>
<td>511,957.686</td>
</tr>
<tr>
<td></td>
<td>2 時間後～</td>
<td>86,304.793</td>
<td>185,291.107</td>
<td>270,069.421</td>
<td>374,965.950</td>
</tr>
<tr>
<td></td>
<td>3 時間後～</td>
<td>58,436.760</td>
<td>132,999.405</td>
<td>207,444.628</td>
<td>289,639.669</td>
</tr>
<tr>
<td></td>
<td>6 時間後～</td>
<td>27,789.752</td>
<td>70,844.298</td>
<td>133,077.686</td>
<td>183,960.331</td>
</tr>
<tr>
<td></td>
<td>12 時間後～</td>
<td>12,994.645</td>
<td>36,792.066</td>
<td>63,016.198</td>
<td>105,679.339</td>
</tr>
<tr>
<td></td>
<td>2 日目～</td>
<td>5,910.215</td>
<td>17,104.397</td>
<td>31,703.802</td>
<td>55,579.504</td>
</tr>
<tr>
<td></td>
<td>3 日目～</td>
<td>2,661.554</td>
<td>7,788.959</td>
<td>15,268.593</td>
<td>28,572.562</td>
</tr>
<tr>
<td></td>
<td>4 日目～</td>
<td>1,671.299</td>
<td>4,775.140</td>
<td>9,628.562</td>
<td>18,396.033</td>
</tr>
<tr>
<td></td>
<td>5 日目～</td>
<td>1,178.129</td>
<td>3,522.645</td>
<td>7,045.289</td>
<td>13,386.050</td>
</tr>
<tr>
<td></td>
<td>6 日目～</td>
<td>931.544</td>
<td>2,700.694</td>
<td>5,479.669</td>
<td>10,607.074</td>
</tr>
<tr>
<td></td>
<td>7 日目～</td>
<td>751.498</td>
<td>2,231.008</td>
<td>4,227.174</td>
<td>8,571.769</td>
</tr>
<tr>
<td></td>
<td>8 日目～</td>
<td>614.506</td>
<td>1,890.486</td>
<td>3,796.628</td>
<td>7,280.132</td>
</tr>
<tr>
<td></td>
<td>1 月後～</td>
<td>100.591</td>
<td>306.079</td>
<td>596.501</td>
<td>1,232.926</td>
</tr>
</tbody>
</table>

※参考文献[42]の長崎原爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を浴びて放射化する地上の物質を独自に試算して得た値である。なお、放射能を有する塵の上昇、輸送及び降下に要する時間は考慮していない。つまり爆発1分後には地表に堆積しているものとして計算した値である。また、堆積範囲には、クレーターだけでなく、地表爆発により巻き上がられた土砂等が大量に堆積するその周囲を含んでいる。
表D－8 1キロトンの核兵器の地表爆発（爆発高度1m）から発生した放射性降下物の塵の半分が半径1kmに一様に拡散した場合の地表1mの高さでの残留放射線（Sv）

<table>
<thead>
<tr>
<th>区分</th>
<th>潜在時間</th>
<th>～1時間</th>
<th>～3時間</th>
<th>～6時間</th>
<th>～12時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガンマ線</td>
<td>1分後</td>
<td>106.560</td>
<td>130.240</td>
<td>145.040</td>
<td>165.760</td>
</tr>
<tr>
<td></td>
<td>1時間後</td>
<td>15.984</td>
<td>29.600</td>
<td>42.032</td>
<td>56.832</td>
</tr>
<tr>
<td></td>
<td>2時間後</td>
<td>8.732</td>
<td>19.714</td>
<td>29.600</td>
<td>42.032</td>
</tr>
<tr>
<td></td>
<td>3時間後</td>
<td>6.127</td>
<td>14.859</td>
<td>23.680</td>
<td>35.520</td>
</tr>
<tr>
<td></td>
<td>6時間後</td>
<td>3.256</td>
<td>8.584</td>
<td>14.800</td>
<td>23.680</td>
</tr>
<tr>
<td></td>
<td>12時間後</td>
<td>1.717</td>
<td>4.736</td>
<td>8.584</td>
<td>14.800</td>
</tr>
<tr>
<td></td>
<td>2日目</td>
<td>0.858</td>
<td>2.457</td>
<td>4.736</td>
<td>8.288</td>
</tr>
<tr>
<td></td>
<td>3日目</td>
<td>0.414</td>
<td>1.214</td>
<td>2.368</td>
<td>4.440</td>
</tr>
<tr>
<td></td>
<td>4日目</td>
<td>0.275</td>
<td>0.829</td>
<td>1.598</td>
<td>2.960</td>
</tr>
<tr>
<td></td>
<td>5日目</td>
<td>0.204</td>
<td>0.592</td>
<td>1.184</td>
<td>2.309</td>
</tr>
<tr>
<td></td>
<td>6日目</td>
<td>0.154</td>
<td>0.474</td>
<td>0.888</td>
<td>1.746</td>
</tr>
<tr>
<td></td>
<td>7日目</td>
<td>0.112</td>
<td>0.326</td>
<td>0.651</td>
<td>1.214</td>
</tr>
<tr>
<td></td>
<td>8日目</td>
<td>0.068</td>
<td>0.198</td>
<td>0.385</td>
<td>0.710</td>
</tr>
<tr>
<td></td>
<td>1月後</td>
<td>0.004</td>
<td>0.011</td>
<td>0.022</td>
<td>0.044</td>
</tr>
<tr>
<td>ベータ線</td>
<td>1分後</td>
<td>1,521.440</td>
<td>1,704.960</td>
<td>1,778.960</td>
<td>1,847.040</td>
</tr>
<tr>
<td></td>
<td>1時間後</td>
<td>120.176</td>
<td>227.920</td>
<td>313.168</td>
<td>387.168</td>
</tr>
<tr>
<td></td>
<td>2時間後</td>
<td>65.268</td>
<td>140.126</td>
<td>204.240</td>
<td>283.568</td>
</tr>
<tr>
<td></td>
<td>3時間後</td>
<td>44.193</td>
<td>100.581</td>
<td>156.880</td>
<td>219.040</td>
</tr>
<tr>
<td></td>
<td>6時間後</td>
<td>21.016</td>
<td>53.576</td>
<td>100.640</td>
<td>139.120</td>
</tr>
<tr>
<td></td>
<td>12時間後</td>
<td>9.827</td>
<td>27.824</td>
<td>47.656</td>
<td>79.920</td>
</tr>
<tr>
<td></td>
<td>2日目</td>
<td>4.470</td>
<td>12.935</td>
<td>23.976</td>
<td>42.032</td>
</tr>
<tr>
<td></td>
<td>3日目</td>
<td>2.013</td>
<td>5.890</td>
<td>11.544</td>
<td>21.608</td>
</tr>
<tr>
<td></td>
<td>4日目</td>
<td>1.264</td>
<td>3.611</td>
<td>7.282</td>
<td>13.912</td>
</tr>
<tr>
<td></td>
<td>5日目</td>
<td>0.891</td>
<td>2.664</td>
<td>5.328</td>
<td>10.123</td>
</tr>
<tr>
<td></td>
<td>6日目</td>
<td>0.704</td>
<td>2.042</td>
<td>4.144</td>
<td>8.022</td>
</tr>
<tr>
<td></td>
<td>7日目</td>
<td>0.568</td>
<td>1.687</td>
<td>3.197</td>
<td>6.482</td>
</tr>
<tr>
<td></td>
<td>8日目</td>
<td>0.465</td>
<td>1.430</td>
<td>2.871</td>
<td>5.506</td>
</tr>
<tr>
<td></td>
<td>1月後</td>
<td>0.076</td>
<td>0.231</td>
<td>0.451</td>
<td>0.932</td>
</tr>
</tbody>
</table>

※参考文献[42]の長崎原爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を浴びて放射化する地上の物質を独自に試算して得た値である。なお、放射能を有する塵の上昇、輸送及び降下に要する時間は考慮していない。つまり爆発1分後には地表に堆積しているものとして計算した値である。
表D－9 1キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径1kmに一様に拡散して皮膚に付着した場合の線量（Sv）

<table>
<thead>
<tr>
<th>区 分</th>
<th>滞在時間</th>
<th>～1時間</th>
<th>～3時間</th>
<th>～6時間</th>
<th>～12時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガンマ線及びベータ線</td>
<td>1分後～</td>
<td>102.120</td>
<td>122.100</td>
<td>130.980</td>
<td>139.860</td>
</tr>
<tr>
<td></td>
<td>1時間後～</td>
<td>11.988</td>
<td>22.200</td>
<td>31.080</td>
<td>39.960</td>
</tr>
<tr>
<td></td>
<td>3時間後～</td>
<td>4.440</td>
<td>10.212</td>
<td>15.984</td>
<td>22.200</td>
</tr>
<tr>
<td></td>
<td>6時間後～</td>
<td>2.153</td>
<td>5.550</td>
<td>9.324</td>
<td>14.430</td>
</tr>
<tr>
<td></td>
<td>12時間後～</td>
<td>1.021</td>
<td>2.886</td>
<td>5.106</td>
<td>8.658</td>
</tr>
<tr>
<td></td>
<td>2日目～</td>
<td>0.488</td>
<td>1.376</td>
<td>2.664</td>
<td>4.662</td>
</tr>
<tr>
<td></td>
<td>3日目～</td>
<td>0.222</td>
<td>0.666</td>
<td>1.288</td>
<td>2.442</td>
</tr>
<tr>
<td></td>
<td>4日目～</td>
<td>0.144</td>
<td>0.422</td>
<td>0.844</td>
<td>1.621</td>
</tr>
<tr>
<td></td>
<td>5日目～</td>
<td>0.107</td>
<td>0.311</td>
<td>0.622</td>
<td>1.199</td>
</tr>
<tr>
<td></td>
<td>6日目～</td>
<td>0.082</td>
<td>0.244</td>
<td>0.488</td>
<td>0.955</td>
</tr>
<tr>
<td></td>
<td>7日目～</td>
<td>0.067</td>
<td>0.200</td>
<td>0.400</td>
<td>0.777</td>
</tr>
<tr>
<td></td>
<td>8日目～</td>
<td>0.056</td>
<td>0.164</td>
<td>0.333</td>
<td>0.622</td>
</tr>
<tr>
<td></td>
<td>1月後～</td>
<td>0.009</td>
<td>0.029</td>
<td>0.029</td>
<td>0.111</td>
</tr>
</tbody>
</table>

※参考文献[42]の長崎原爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を浴びて放射化する地上の物質を独自に試算して得た値である。
なお、線量は、表面に塵が厚さ20μm付着したときの、ICRU 球の表面から70μmのところでものである。
表D-10 1キロトンの核兵器の地表爆発（爆発高度 1m）から発生した放射性降下物の塵の半分が半径 40mのクレーターに降下した場合の地表 1m の高さでの残留放射線（Sv）

<table>
<thead>
<tr>
<th>区 分</th>
<th>滞在時間</th>
<th>～1 時間</th>
<th>～3 時間</th>
<th>～6 時間</th>
<th>～12 時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガンマ線</td>
<td>1 分後～</td>
<td>66,600,000</td>
<td>81,400,000</td>
<td>90,650,000</td>
<td>103,600,000</td>
</tr>
<tr>
<td></td>
<td>1 時間後～</td>
<td>9,990,000</td>
<td>18,500,000</td>
<td>26,270,000</td>
<td>35,520,000</td>
</tr>
<tr>
<td></td>
<td>2 時間後～</td>
<td>5,457,500</td>
<td>12,321,000</td>
<td>18,500,000</td>
<td>26,270,000</td>
</tr>
<tr>
<td></td>
<td>3 時間後～</td>
<td>3,829,500</td>
<td>9,287,000</td>
<td>14,800,000</td>
<td>22,200,000</td>
</tr>
<tr>
<td></td>
<td>6 時間後～</td>
<td>2,035,000</td>
<td>5,365,000</td>
<td>9,250,000</td>
<td>14,800,000</td>
</tr>
<tr>
<td></td>
<td>12 時間後～</td>
<td>1,073,000</td>
<td>2,960,000</td>
<td>5,365,000</td>
<td>9,250,000</td>
</tr>
<tr>
<td></td>
<td>2 日目～</td>
<td>536,500</td>
<td>1,535,500</td>
<td>2,960,000</td>
<td>5,180,000</td>
</tr>
<tr>
<td></td>
<td>3 日目～</td>
<td>259,000</td>
<td>758,500</td>
<td>1,480,000</td>
<td>2,775,000</td>
</tr>
<tr>
<td></td>
<td>4 日目～</td>
<td>172,050</td>
<td>518,000</td>
<td>999,000</td>
<td>1,850,000</td>
</tr>
<tr>
<td></td>
<td>5 日目～</td>
<td>127,650</td>
<td>370,000</td>
<td>740,000</td>
<td>1,443,000</td>
</tr>
<tr>
<td></td>
<td>6 日目～</td>
<td>96,200</td>
<td>296,000</td>
<td>555,000</td>
<td>1,091,500</td>
</tr>
<tr>
<td></td>
<td>7 日目～</td>
<td>70,300</td>
<td>203,500</td>
<td>407,000</td>
<td>758,500</td>
</tr>
<tr>
<td></td>
<td>8 日目～</td>
<td>42,550</td>
<td>123,950</td>
<td>240,500</td>
<td>444,000</td>
</tr>
<tr>
<td></td>
<td>1 月後～</td>
<td>2,405</td>
<td>7,030</td>
<td>14,060</td>
<td>27,750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ベータ線</th>
<th>1 分後～</th>
<th>950,900,000</th>
<th>1,065,600,000</th>
<th>1,111,850,000</th>
<th>1,154,400,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 時間後～</td>
<td>75,110,000</td>
<td>142,450,000</td>
<td>195,730,000</td>
<td>241,980,000</td>
</tr>
<tr>
<td></td>
<td>2 時間後～</td>
<td>40,792,500</td>
<td>87,579,000</td>
<td>127,650,000</td>
<td>177,230,000</td>
</tr>
<tr>
<td></td>
<td>3 時間後～</td>
<td>27,620,500</td>
<td>62,863,000</td>
<td>98,050,000</td>
<td>136,900,000</td>
</tr>
<tr>
<td></td>
<td>6 時間後～</td>
<td>13,135,000</td>
<td>33,485,000</td>
<td>62,900,000</td>
<td>86,950,000</td>
</tr>
<tr>
<td></td>
<td>12 時間後～</td>
<td>6,142,000</td>
<td>17,390,000</td>
<td>29,785,000</td>
<td>49,950,000</td>
</tr>
<tr>
<td></td>
<td>2 日目～</td>
<td>2,793,500</td>
<td>8,084,500</td>
<td>14,985,000</td>
<td>26,270,000</td>
</tr>
<tr>
<td></td>
<td>3 日目～</td>
<td>1,258,000</td>
<td>3,681,500</td>
<td>7,215,000</td>
<td>13,505,000</td>
</tr>
<tr>
<td></td>
<td>4 日目～</td>
<td>789,950</td>
<td>2,257,000</td>
<td>4,551,000</td>
<td>8,695,000</td>
</tr>
<tr>
<td></td>
<td>5 日目～</td>
<td>556,850</td>
<td>1,665,000</td>
<td>3,330,000</td>
<td>6,327,000</td>
</tr>
<tr>
<td></td>
<td>6 日目～</td>
<td>440,300</td>
<td>1,276,500</td>
<td>2,590,000</td>
<td>5,013,500</td>
</tr>
<tr>
<td></td>
<td>7 日目～</td>
<td>355,200</td>
<td>1,054,500</td>
<td>1,998,000</td>
<td>4,051,500</td>
</tr>
<tr>
<td></td>
<td>8 日目～</td>
<td>290,450</td>
<td>893,550</td>
<td>1,794,500</td>
<td>3,441,000</td>
</tr>
<tr>
<td></td>
<td>1 月後～</td>
<td>47,545</td>
<td>144,670</td>
<td>281,940</td>
<td>582,750</td>
</tr>
</tbody>
</table>

※参考文献[42]の長崎爆のデータを用い、地表1mの高さで爆発した場合に発生する核分裂生成物及び中性子を浴びて放射化する地上的物質を独自に算定して求めた値である。なお、放射能を有する塵の上昇、輸送及び降下に要する時間は考慮していない。つまり爆発1分後には地表に堆積しているものとして計算した値である。また、堆積範囲には、クレーターだけでなく、地表爆発により巻き上がられた土砂等が大量に堆積するその周囲を含んでいる。
表D－11 16キロトンの核兵器の空中爆発（爆発高度 600m）での爆風及び熱線

<table>
<thead>
<tr>
<th>地上距離 (m)</th>
<th>爆風</th>
<th></th>
<th></th>
<th>熱線</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>過圧 (kPa)</td>
<td>psi</td>
<td>到達時間 (秒)</td>
<td>風速 (m/秒)</td>
</tr>
<tr>
<td>100</td>
<td>185.85</td>
<td>26.96</td>
<td>0.82</td>
<td>277.7</td>
</tr>
<tr>
<td>200</td>
<td>169.90</td>
<td>24.64</td>
<td>0.87</td>
<td>260.8</td>
</tr>
<tr>
<td>300</td>
<td>149.38</td>
<td>21.67</td>
<td>0.96</td>
<td>238.0</td>
</tr>
<tr>
<td>400</td>
<td>128.54</td>
<td>18.64</td>
<td>1.08</td>
<td>213.2</td>
</tr>
<tr>
<td>500</td>
<td>109.63</td>
<td>15.90</td>
<td>1.23</td>
<td>189.3</td>
</tr>
<tr>
<td>600</td>
<td>99.27</td>
<td>14.40</td>
<td>1.39</td>
<td>175.4</td>
</tr>
<tr>
<td>700</td>
<td>95.04</td>
<td>13.78</td>
<td>1.58</td>
<td>169.6</td>
</tr>
<tr>
<td>800</td>
<td>87.64</td>
<td>12.71</td>
<td>1.76</td>
<td>159.2</td>
</tr>
<tr>
<td>900</td>
<td>78.56</td>
<td>11.39</td>
<td>1.95</td>
<td>145.9</td>
</tr>
<tr>
<td>1,000</td>
<td>69.56</td>
<td>10.09</td>
<td>2.15</td>
<td>132.3</td>
</tr>
<tr>
<td>1,100</td>
<td>61.41</td>
<td>8.91</td>
<td>2.37</td>
<td>119.4</td>
</tr>
<tr>
<td>1,200</td>
<td>54.33</td>
<td>7.88</td>
<td>2.60</td>
<td>107.8</td>
</tr>
<tr>
<td>1,300</td>
<td>48.28</td>
<td>7.00</td>
<td>2.83</td>
<td>97.5</td>
</tr>
<tr>
<td>1,400</td>
<td>43.13</td>
<td>6.26</td>
<td>3.07</td>
<td>88.5</td>
</tr>
<tr>
<td>1,500</td>
<td>38.74</td>
<td>5.62</td>
<td>3.32</td>
<td>80.6</td>
</tr>
<tr>
<td>1,600</td>
<td>35.00</td>
<td>5.08</td>
<td>3.57</td>
<td>73.7</td>
</tr>
<tr>
<td>1,700</td>
<td>31.79</td>
<td>4.61</td>
<td>3.82</td>
<td>67.6</td>
</tr>
<tr>
<td>1,800</td>
<td>29.01</td>
<td>4.21</td>
<td>4.08</td>
<td>62.3</td>
</tr>
<tr>
<td>1,900</td>
<td>26.61</td>
<td>3.86</td>
<td>4.34</td>
<td>57.6</td>
</tr>
<tr>
<td>2,000</td>
<td>24.51</td>
<td>3.55</td>
<td>4.60</td>
<td>53.5</td>
</tr>
<tr>
<td>2,100</td>
<td>22.66</td>
<td>3.29</td>
<td>4.87</td>
<td>49.8</td>
</tr>
<tr>
<td>2,200</td>
<td>21.04</td>
<td>3.05</td>
<td>5.14</td>
<td>46.5</td>
</tr>
<tr>
<td>2,300</td>
<td>19.60</td>
<td>2.84</td>
<td>5.41</td>
<td>43.5</td>
</tr>
<tr>
<td>2,400</td>
<td>18.31</td>
<td>2.66</td>
<td>5.68</td>
<td>40.8</td>
</tr>
<tr>
<td>2,500</td>
<td>17.16</td>
<td>2.49</td>
<td>5.95</td>
<td>38.4</td>
</tr>
<tr>
<td>2,600</td>
<td>16.13</td>
<td>2.34</td>
<td>6.23</td>
<td>36.3</td>
</tr>
<tr>
<td>2,700</td>
<td>15.20</td>
<td>2.20</td>
<td>6.50</td>
<td>34.3</td>
</tr>
<tr>
<td>2,800</td>
<td>14.35</td>
<td>2.08</td>
<td>6.78</td>
<td>32.5</td>
</tr>
<tr>
<td>2,900</td>
<td>13.58</td>
<td>1.97</td>
<td>7.06</td>
<td>30.8</td>
</tr>
<tr>
<td>3,000</td>
<td>12.88</td>
<td>1.87</td>
<td>7.34</td>
<td>29.3</td>
</tr>
<tr>
<td>3,500</td>
<td>10.15</td>
<td>1.47</td>
<td>8.74</td>
<td>23.4</td>
</tr>
<tr>
<td>4,000</td>
<td>8.29</td>
<td>1.20</td>
<td>10.16</td>
<td>19.2</td>
</tr>
<tr>
<td>4,500</td>
<td>6.95</td>
<td>1.01</td>
<td>11.59</td>
<td>16.2</td>
</tr>
</tbody>
</table>

※爆風の過圧、到達時間及び熱線については、参考文献[63]記載の方法により求めた値である。また、爆風の風速は、参考文献[31]記載の方法により求めた参考値である。なお、熱線の計算に当たっては、視程を20kmと仮定した。
表D－12 1メガトンの核兵器の空中爆発（爆発高度2,400m）での爆風及び熱線

<table>
<thead>
<tr>
<th>地上 距離(m)</th>
<th>爆風</th>
<th>過圧</th>
<th>到達時間</th>
<th>風速</th>
<th>熱線</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kPa</td>
<td>psi</td>
<td>秒</td>
<td>m/秒</td>
<td>MJ/m²</td>
</tr>
<tr>
<td>100</td>
<td>188.22</td>
<td>27.30</td>
<td>3.21</td>
<td>280.2</td>
<td>16.652</td>
</tr>
<tr>
<td>200</td>
<td>187.06</td>
<td>27.13</td>
<td>3.23</td>
<td>279.0</td>
<td>16.562</td>
</tr>
<tr>
<td>300</td>
<td>185.17</td>
<td>26.86</td>
<td>3.25</td>
<td>277.0</td>
<td>16.414</td>
</tr>
<tr>
<td>400</td>
<td>182.60</td>
<td>26.48</td>
<td>3.28</td>
<td>274.4</td>
<td>16.212</td>
</tr>
<tr>
<td>500</td>
<td>179.42</td>
<td>26.02</td>
<td>3.32</td>
<td>271.0</td>
<td>15.959</td>
</tr>
<tr>
<td>600</td>
<td>175.70</td>
<td>25.48</td>
<td>3.38</td>
<td>267.1</td>
<td>15.659</td>
</tr>
<tr>
<td>700</td>
<td>171.54</td>
<td>24.88</td>
<td>3.44</td>
<td>262.6</td>
<td>15.319</td>
</tr>
<tr>
<td>800</td>
<td>167.02</td>
<td>24.22</td>
<td>3.50</td>
<td>257.7</td>
<td>14.944</td>
</tr>
<tr>
<td>900</td>
<td>162.23</td>
<td>23.53</td>
<td>3.58</td>
<td>252.5</td>
<td>14.540</td>
</tr>
<tr>
<td>1,000</td>
<td>157.24</td>
<td>22.81</td>
<td>3.67</td>
<td>246.9</td>
<td>14.113</td>
</tr>
<tr>
<td>1,100</td>
<td>152.13</td>
<td>22.06</td>
<td>3.76</td>
<td>241.1</td>
<td>13.668</td>
</tr>
<tr>
<td>1,200</td>
<td>146.95</td>
<td>21.31</td>
<td>3.86</td>
<td>235.2</td>
<td>13.211</td>
</tr>
<tr>
<td>1,300</td>
<td>141.76</td>
<td>20.56</td>
<td>3.97</td>
<td>229.1</td>
<td>12.747</td>
</tr>
<tr>
<td>1,400</td>
<td>136.60</td>
<td>19.81</td>
<td>4.09</td>
<td>223.0</td>
<td>12.279</td>
</tr>
<tr>
<td>1,500</td>
<td>131.51</td>
<td>19.07</td>
<td>4.21</td>
<td>216.9</td>
<td>11.813</td>
</tr>
<tr>
<td>1,600</td>
<td>126.52</td>
<td>18.35</td>
<td>4.34</td>
<td>210.8</td>
<td>11.351</td>
</tr>
<tr>
<td>1,700</td>
<td>121.65</td>
<td>17.64</td>
<td>4.48</td>
<td>204.7</td>
<td>10.896</td>
</tr>
<tr>
<td>1,800</td>
<td>116.93</td>
<td>16.96</td>
<td>4.62</td>
<td>198.7</td>
<td>10.450</td>
</tr>
<tr>
<td>1,900</td>
<td>112.36</td>
<td>16.30</td>
<td>4.77</td>
<td>192.8</td>
<td>10.015</td>
</tr>
<tr>
<td>2,000</td>
<td>107.96</td>
<td>15.66</td>
<td>4.93</td>
<td>187.1</td>
<td>9.594</td>
</tr>
<tr>
<td>2,100</td>
<td>103.73</td>
<td>15.04</td>
<td>5.09</td>
<td>181.4</td>
<td>9.185</td>
</tr>
<tr>
<td>2,200</td>
<td>100.45</td>
<td>14.57</td>
<td>5.25</td>
<td>177.0</td>
<td>8.792</td>
</tr>
<tr>
<td>2,300</td>
<td>98.60</td>
<td>14.30</td>
<td>5.42</td>
<td>174.5</td>
<td>8.413</td>
</tr>
<tr>
<td>2,400</td>
<td>97.47</td>
<td>14.14</td>
<td>5.60</td>
<td>173.0</td>
<td>8.050</td>
</tr>
<tr>
<td>2,500</td>
<td>96.59</td>
<td>14.01</td>
<td>5.78</td>
<td>171.7</td>
<td>7.702</td>
</tr>
<tr>
<td>2,600</td>
<td>95.69</td>
<td>13.88</td>
<td>5.97</td>
<td>170.5</td>
<td>7.369</td>
</tr>
<tr>
<td>2,700</td>
<td>94.64</td>
<td>13.73</td>
<td>6.16</td>
<td>169.0</td>
<td>7.051</td>
</tr>
<tr>
<td>2,800</td>
<td>93.37</td>
<td>13.54</td>
<td>6.35</td>
<td>167.3</td>
<td>6.747</td>
</tr>
<tr>
<td>2,900</td>
<td>91.88</td>
<td>13.33</td>
<td>6.52</td>
<td>165.2</td>
<td>6.458</td>
</tr>
<tr>
<td>3,000</td>
<td>90.17</td>
<td>13.08</td>
<td>6.69</td>
<td>162.8</td>
<td>6.183</td>
</tr>
<tr>
<td>3,100</td>
<td>88.30</td>
<td>12.81</td>
<td>6.87</td>
<td>160.1</td>
<td>5.921</td>
</tr>
<tr>
<td>3,300</td>
<td>84.16</td>
<td>12.21</td>
<td>7.24</td>
<td>154.2</td>
<td>5.435</td>
</tr>
<tr>
<td>3,500</td>
<td>79.73</td>
<td>11.56</td>
<td>7.63</td>
<td>147.7</td>
<td>4.995</td>
</tr>
</tbody>
</table>
付録D 放射線、爆風及び熱線に関する試算値等

（1メガトンの続き）

<table>
<thead>
<tr>
<th>地上距離</th>
<th>爆風</th>
<th>熱線</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>過圧</td>
<td>到達時間</td>
</tr>
<tr>
<td>m</td>
<td>kPa</td>
<td>psi</td>
</tr>
<tr>
<td>3,900</td>
<td>70.85</td>
<td>10.28</td>
</tr>
<tr>
<td>4,000</td>
<td>68.71</td>
<td>9.97</td>
</tr>
<tr>
<td>4,500</td>
<td>58.88</td>
<td>8.54</td>
</tr>
<tr>
<td>5,900</td>
<td>39.39</td>
<td>5.71</td>
</tr>
<tr>
<td>6,400</td>
<td>34.67</td>
<td>5.03</td>
</tr>
<tr>
<td>7,900</td>
<td>24.78</td>
<td>3.59</td>
</tr>
<tr>
<td>9,900</td>
<td>17.28</td>
<td>2.51</td>
</tr>
<tr>
<td>11,400</td>
<td>13.83</td>
<td>2.01</td>
</tr>
<tr>
<td>11,900</td>
<td>12.94</td>
<td>1.88</td>
</tr>
<tr>
<td>12,300</td>
<td>12.29</td>
<td>1.78</td>
</tr>
<tr>
<td>13,900</td>
<td>10.17</td>
<td>1.48</td>
</tr>
<tr>
<td>15,000</td>
<td>9.06</td>
<td>1.31</td>
</tr>
<tr>
<td>15,900</td>
<td>8.29</td>
<td>1.20</td>
</tr>
<tr>
<td>18,000</td>
<td>6.88</td>
<td>1.00</td>
</tr>
</tbody>
</table>

※爆風の過圧、到達時間及び熱線については、参考文献[63]記載の方法により求めた値である。また、爆風の風速は、参考文献[31]記載の方法により求めた参考値である。なお、熱線の計算に当たっては、視程を20kmと仮定した。
表D-13 16キロトンの核兵器の地表爆発（爆発高度1m）での爆風及び熱線

<table>
<thead>
<tr>
<th>地上距離</th>
<th>遷移速度</th>
<th>到達時間</th>
<th>風速</th>
<th>熱線</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>kPa</td>
<td>psi</td>
<td>秒</td>
<td>MJ/m²</td>
</tr>
<tr>
<td>300</td>
<td>568.94</td>
<td>82.52</td>
<td>0.17</td>
<td>565.6</td>
</tr>
<tr>
<td>400</td>
<td>285.02</td>
<td>41.34</td>
<td>0.31</td>
<td>369.9</td>
</tr>
<tr>
<td>500</td>
<td>172.76</td>
<td>25.06</td>
<td>0.48</td>
<td>263.9</td>
</tr>
<tr>
<td>600</td>
<td>117.66</td>
<td>17.07</td>
<td>0.67</td>
<td>199.7</td>
</tr>
<tr>
<td>700</td>
<td>86.57</td>
<td>12.56</td>
<td>0.88</td>
<td>157.6</td>
</tr>
<tr>
<td>800</td>
<td>67.23</td>
<td>9.75</td>
<td>1.11</td>
<td>128.6</td>
</tr>
<tr>
<td>900</td>
<td>54.30</td>
<td>7.88</td>
<td>1.34</td>
<td>107.7</td>
</tr>
<tr>
<td>1,000</td>
<td>45.18</td>
<td>6.55</td>
<td>1.58</td>
<td>92.1</td>
</tr>
<tr>
<td>1,100</td>
<td>38.46</td>
<td>5.58</td>
<td>1.84</td>
<td>80.1</td>
</tr>
<tr>
<td>1,200</td>
<td>33.34</td>
<td>4.84</td>
<td>2.09</td>
<td>70.6</td>
</tr>
<tr>
<td>1,300</td>
<td>29.33</td>
<td>4.25</td>
<td>2.35</td>
<td>62.9</td>
</tr>
<tr>
<td>1,400</td>
<td>26.12</td>
<td>3.79</td>
<td>2.62</td>
<td>56.6</td>
</tr>
<tr>
<td>1,500</td>
<td>23.49</td>
<td>3.41</td>
<td>2.89</td>
<td>51.4</td>
</tr>
<tr>
<td>1,600</td>
<td>21.30</td>
<td>3.09</td>
<td>3.16</td>
<td>47.0</td>
</tr>
<tr>
<td>1,700</td>
<td>19.46</td>
<td>2.82</td>
<td>3.43</td>
<td>43.2</td>
</tr>
<tr>
<td>1,800</td>
<td>17.90</td>
<td>2.60</td>
<td>3.70</td>
<td>40.0</td>
</tr>
<tr>
<td>1,900</td>
<td>16.54</td>
<td>2.40</td>
<td>3.98</td>
<td>37.1</td>
</tr>
<tr>
<td>2,000</td>
<td>15.37</td>
<td>2.23</td>
<td>4.26</td>
<td>34.6</td>
</tr>
<tr>
<td>2,100</td>
<td>14.33</td>
<td>2.08</td>
<td>4.54</td>
<td>32.4</td>
</tr>
<tr>
<td>2,200</td>
<td>13.42</td>
<td>1.95</td>
<td>4.82</td>
<td>30.5</td>
</tr>
<tr>
<td>2,300</td>
<td>12.61</td>
<td>1.83</td>
<td>5.10</td>
<td>28.7</td>
</tr>
<tr>
<td>2,400</td>
<td>11.88</td>
<td>1.72</td>
<td>5.38</td>
<td>27.1</td>
</tr>
<tr>
<td>2,500</td>
<td>11.23</td>
<td>1.63</td>
<td>5.67</td>
<td>25.7</td>
</tr>
<tr>
<td>2,600</td>
<td>10.64</td>
<td>1.54</td>
<td>5.95</td>
<td>24.4</td>
</tr>
<tr>
<td>2,700</td>
<td>10.10</td>
<td>1.46</td>
<td>6.24</td>
<td>23.2</td>
</tr>
<tr>
<td>2,800</td>
<td>9.61</td>
<td>1.39</td>
<td>6.52</td>
<td>22.2</td>
</tr>
<tr>
<td>2,900</td>
<td>9.16</td>
<td>1.33</td>
<td>6.81</td>
<td>21.2</td>
</tr>
<tr>
<td>3,000</td>
<td>8.75</td>
<td>1.27</td>
<td>7.09</td>
<td>20.2</td>
</tr>
<tr>
<td>3,100</td>
<td>8.37</td>
<td>1.21</td>
<td>7.38</td>
<td>19.4</td>
</tr>
<tr>
<td>3,200</td>
<td>8.02</td>
<td>1.16</td>
<td>7.67</td>
<td>18.6</td>
</tr>
<tr>
<td>3,300</td>
<td>7.70</td>
<td>1.12</td>
<td>7.96</td>
<td>17.9</td>
</tr>
<tr>
<td>3,400</td>
<td>7.40</td>
<td>1.07</td>
<td>8.24</td>
<td>17.2</td>
</tr>
<tr>
<td>3,500</td>
<td>7.12</td>
<td>1.03</td>
<td>8.53</td>
<td>16.6</td>
</tr>
</tbody>
</table>

※爆風の圧力、到達時間及び熱線については、参考文献[63]記載の方法により求めた値である。また、爆風の風速は、参考文献[31]記載の方法により求めた参考値である。なお、熱線の計算に当たっては、視程を20kmと仮定した。200m以内は火球に呑み込まれるものとして計算していない。
表D－14 1キロトンの核兵器の地表爆発（爆発高度1m）での爆風及び熱線

<table>
<thead>
<tr>
<th>地上距離</th>
<th>爆風</th>
<th>熱線</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>過圧</td>
<td>到達時間</td>
</tr>
<tr>
<td>m</td>
<td>kPa</td>
<td>psi</td>
</tr>
<tr>
<td>200</td>
<td>169.92</td>
<td>24.65</td>
</tr>
<tr>
<td>300</td>
<td>74.81</td>
<td>10.85</td>
</tr>
<tr>
<td>400</td>
<td>44.62</td>
<td>6.47</td>
</tr>
<tr>
<td>500</td>
<td>30.86</td>
<td>4.48</td>
</tr>
<tr>
<td>600</td>
<td>23.23</td>
<td>3.37</td>
</tr>
<tr>
<td>700</td>
<td>18.45</td>
<td>2.68</td>
</tr>
<tr>
<td>800</td>
<td>15.21</td>
<td>2.21</td>
</tr>
<tr>
<td>900</td>
<td>12.87</td>
<td>1.87</td>
</tr>
<tr>
<td>1,000</td>
<td>11.12</td>
<td>1.61</td>
</tr>
<tr>
<td>1,100</td>
<td>9.75</td>
<td>1.41</td>
</tr>
<tr>
<td>1,200</td>
<td>8.67</td>
<td>1.26</td>
</tr>
<tr>
<td>1,300</td>
<td>7.78</td>
<td>1.13</td>
</tr>
<tr>
<td>1,400</td>
<td>7.05</td>
<td>1.02</td>
</tr>
</tbody>
</table>

※爆風の過圧、到達時間及び熱線については、参考文献[63]記載の方法により求めた値である。また、爆風の風速は、参考文献[31]記載の方法により求めた参考値である。なお、熱線の計算に当たっては、視程を20kmと仮定した。100m以内は火球に呑み込まれるものとして計算していない。
付録E 核兵器廃絶に向けた提言

以下の報告等に関する抜粋邦訳は、いずれも参考文献[81]による。

1 大量破壊兵器委員会報告（平成18年（2006年）6月1日）[⑥]の勧告（抜粋）

核兵器
核兵器の拡散防止
勧告1
すべてのNPT締約国は、条約で約束し1995年の無期限延長の際に再確認した、原則的かつバランスのとれた不拡散と軍縮に対する誓約に立ち返る必要がある。

勧告2
すべてのNPT締約国は、不拡散と軍縮の「原則と目的」に関する決定、NPT再検討プロセスの強化に関する決定、及び中東を核その他すべての大量破壊兵器のない地域とする中東決議を履行しなければならない。これらはすべて1995年に採択された。また、2000年に採択された核軍縮のための「13項目の実際的措置」の履行を推進しなければならない。

勧告3
不拡散体制の有効性を高めるために、すべてのNPT締約非核兵器国はIAEA追加議定書で強化された包括的保障措置を受け入れるべきである。

勧告4
NPT締約国は締約国のために管理事務を扱う常設事務局を設立すべきである。この常設事務局が条約再検討会議及び準備委員会を組織すべきである。また、締約国の過半数の要請があれば、常設事務局がその他の条約関連の会議も組織すべきである。

勧告5
北朝鮮との交渉においては、北朝鮮によるNPT遵守の明示と1997年追加議定書の受諾、さらに1992年の朝鮮半島非核化共同宣言における繋約への復帰と法的確認を主たる要素として含んだ形で検証可能な合意を目指すべきである。

勧告6
イランに関しては、緊張拡大を避け、中東非大量破壊兵器地域設立という共通の
付録E 核兵器廃絶に向けた提言

目的に向けた展望を高めるために、機微な核燃料サイクル関連活動を全て一時停止し、1997年追加議定書を批准し、IAEAへの全面的協力を再開するよう促すための交渉が継続されるべきである。国際社会とイランは、次を含む措置を介して相互信頼を築かなければならない。(1)核燃料サイクル・サービスの供給に関する信頼性のある保証、(2)すべての中東諸国による機微な核燃料サイクル活動の長期にわたる停止または放棄、(3)体制変化をねらった攻撃や転覆行為を行わない保証、(4)国際貿易と投資の促進。

勧告7
NPT締約核兵器国は、非核兵器国に対し、法的拘束力のある消極的防核保証を供与しなければならない。NPT非締約国である核保有国は、それとは別に、同じ保証を供与しなければならない。

勧告8
各国は、核燃料サイクルに関連した拡散の危険を軽減するための様々な方法を模索する協議の場として、IAEAを積極活用すべきである。例として、国際核燃料バンクの提案や、国際的な保証措置下で使用済み核燃料の貯蔵などの核燃料サイクル・サービスを提供する地域センターの提案、また、いくつかの「核燃料サイクル国家」が濃縮・再処理活動を止めた国に核燃料を貸与するという考え方に基づく核燃料サイクル体制の創設に関する提案が挙げられる。

勧告9
各国は、現時点で高濃縮ウランを必要としている艦船や研究炉において、低濃縮ウランの使用を進めていかなければならない。高濃縮ウランの製造は段階的に縮小されるべきである。使用済み核燃料の再処理によりプルトニウム分離を行っている国家はその活動を縮小していく可能性を追求しなければならない。

勧告10
すべての国家は、地球規模で核分裂性質を一掃する取組の推進に向けた国際的なイニシアティブを支持しなければならない。このような支持には、研究炉を高濃縮から低濃縮ウランの使用に転換することや、核分裂性質を中央管理された安全な場所に保管すること、輸出した核物質を安全に処分・廃棄するために供給者に返却することなどが含まれるべきである。

勧告11
NPT締約核兵器国でまだこれを実行していない国々は、地域的な非核兵器地域を創設する条約の議定書を批准すべきである。こうした地域内にあるすべての国家は、IAEAとの間で包括的保障措置協定を締結し、追加議定書の批准と履行に合意しなければならない。

勧告12
すべての国家は、全面的な和平プロセスの一環として、中東非大量破壊兵器地域の設立に向けた継続努力を支持すべきである。現段階においても措置を講じ
付録

ることは可能である。信頼醸成措置として、イランやイスラエルを含む地域のすべての国家は、いかなる濃縮・再処理活動および他の機微の核燃料サイクル活動も自国領土内で行われないとする検証可能な取り決めを長期にわたり遵守していかなければならない。このような誓約には、平和目的の核活動に必要とされる核燃料サイクル・サービスに対する信頼性のある保護が伴わなければならない。エジプト、イラン、イスラエルは、他の中東諸国と同様にCTBTを批准しなければならない。

勧告13
インド・パキスタンは、CTBTを批准すべきである。また何らかの条約が締結されるまでの間、兵器用核分裂性物質の生産モラトリアムを宣言している他の核兵器保有国と足並みをそろえなければならない。両国は、軍事紛争の危険を軽減し、両国の核ミサイル活動における透明性を高めるとともに、政治的、経済的、軍事的措置を介して二国間の緊張緩和を追求し信頼を醸成し続けなければならない。最終的には、両国は核供給国グループ（NSG）やミサイル技術管理レジーム（MTCR）の参加国、および1997年追加議定書に基づくIAEA保障措置協定の締結国となるべきである。

核テロリズムの防止

勧告14
各国は、核兵器や核分裂性物質がテロリストの手に渡らないようにしなければならない。このため各国は、自国領土に存在する、すべての核分裂性物質や放射性物質ならびにその他の放射線源の在庫に関する十分に有効な計量・管理を維持しなければならない。各国は、核テロ行為又はテロを支持するいかなる活動にも、個人の法的責任が存在することを確実にしなければならない。各国は、とりわけ不正な核取引に関する情報を含む情報の共有を通じて協力を拡大しなければならない。また、各国は、核テロリズム防止条約や核物質防護条約への普遍的加盟ならびに国連安保理決議1540の履行を推進すべきである。

現存する核兵器の有効および数の削減

勧告15
すべての核保有国は、核兵器の第一不使用（ノーファースト・ユース）に関する明確な政策を宣言すべきである。それらの国々は、先制攻撃や予防攻撃はもちろん、生物・化学・通常兵器による攻撃に対する報復についてもこの方針が適用されることを具体的に明示しなければならない。

勧告16
すべての核保有国は、自国の軍事計画を見直し、信頼性のある非核の安全保障政策を維持するためには何が必要かを明らかにすべきである。潜水艦発射ミサイル、地上発射大陸間弾道ミサイル、長距離爆撃機からなる核戦力の三本柱を配備する国は、核兵器の重複を減らし核軍拡競争の悪化を防止するために、このよ
付録E 核兵器廃絶に向けた提言

うな政策を放棄しなければならない。

勧告17
ロシアと米国は、両者の核の一触即発警戒態勢の解除に向けた相互措置に合意し、目的達成を促進する合同委員会を設置すべきである。両国は、核戦争計画から警報即発射オプションの撤廃に取り組みつつ、一方で、大部分の戦略戦力の作戦上の即応体制の並行的な緩和を管理下で実施すべきである。後者には以下の方法がある。

・航海中の戦略潜水艦の数を削減するとともに、停泊時における技術的な発射即応性を低減する。
・核爆弾および空中発射巡航ミサイルに関係する飛行場以外の場所に保管する。
・大部分の大陸間弾道ミサイルのノーズコーンおよび／または弾頭をミサイルと別の場所に保管する、またはミサイルの即応体制を下げるために他の措置をとる。

勧告18
ロシアと米国は戦略攻撃力削減条約（モスクワ条約）で認められた配備戦略兵器の数を少なくとも半減することを目指した新しい戦略兵器削減条約の交渉を開始すべきである。これには戦略攻撃力削減条約の下で削減された兵器を不可逆的に解体するという法的拘束力のある誓約を含むべきである。新しい条約には、透明性のある計数規定、兵器解体の日程や手順、及び相互の検証措置も盛り込むべきである。

勧告19
これまでの軍縮努力の基準として、まずロシアと米国が、現役および退役状態にある核兵器保有量の総量を公表し、他の核保有国もそれに続くべきである。また、それらの国々は、核弾頭の透明性、不可逆性、検証、及び物理的破壊に関連する具体的な条項を将来の軍縮協定に盛り込むことに合意すべきである。

勧告20
すべての核保有国は核兵器の継続的保有の問題に対処しなければならない。すべてのNPT締約核兵器国は、NPTやその無期限延長に関係した誓約によっ　て要求される通り、核軍縮に向かう措置をとらなければならない。ロシアと米国がこれを先導すべきである。他の核保有国もこのプロセスに対して個々にまたは調整しあってこの過程に加わるべきである。イスラエル、インド、パキスタンはNPT締　約国ではないものの、同様に核軍縮プロセスに貢献する責任がある。

勧告21
ロシアと米国は、爆破兵器、砲弾ならびに短距離弾道ミサイルの弾頭といった特定種の非戦略核兵器を撤廃する1991年の誓約の実施を進めるべきである。両国は、最終的な廃棄までのあいだ、すべての非戦略核兵器を自国領土内の中央
付録

保管施設に回収することに同意すべきである。また、両国は、検証・透明性・不可逆性を保証する取り決めを行うことにより、1991年の方的削減に関する誓約の強化を図るべきである。

勧告22
すべての核保有国は、他国の領土内にいかなる型の核兵器も配備しないことを誓約すべきである。

勧告23
核兵器システムの代替または近代化を検討している国は、関連条約上のすべての義務および核軍縮に貢献するという責任に照らしてそのような行動を考えなければならない。最低限、新しい軍事能力もつったり新たな任務のための核兵器の開発は慎まなければならない。核兵器と通常兵器の区別をあいまいにしたり、核兵器のしきい値を下げるようなシステムや教義を採択してはならない。

勧告24
すべての核保有国、とりわけロシアと米国は、軍事計画において不要となった核分裂性物質をIAEA保障措置下に置くべきである。高濃縮ウランの貯蔵を削減するために、それらを保有する国々は、ウランを核燃料に適した濃縮水準にまでプレンドして他のNPT締約国に売却するか自国の中用に核エネルギーとして活用すべきである。

勧告25
すべての核保有国は、軍事上の必要性を超えると見なされたり、軍縮活動によって回収された兵器用核分裂性物質の取り扱いに関して厳しい基準をもうけなければならない。米国の保管兵器ならびに使用済核燃料に対する基準はそのような一例である。

勧告26
軍縮会議（CD）は、遅れている兵器用核分裂性物質生産禁止条約（カットオフ条約）の交渉を無条件で即時に開始すべきである。これらの交渉前に、あるいは少なくとも交渉中に、CDは条約の技術的側面を吟味するために科学専門家グループを設立すべきである。

勧告27
CDにおけるカットオフ条約交渉を円滑にするため、5つのNPT締約核兵器国は、他の核保有国も加えて、相互の間で兵器用核分裂性物質の生産停止の合意をするべきである。それらの国は、フランスや英国におけるユーラトムの活動を基礎にして、各国の生産施設をIAEAの査察に開放すべきである。これ8力国は、核兵器に使用可能な核物質の既存の貯蔵量を検証可能な形で制限する問題にも対処していかなければならない。

勧告28
まだ済ませていない国々は、無条件かつ遅滞なく包括的核実験禁止条約（CTB
付録E 核兵器廃絶に向けた提言

T）に調印、批准しなければならない。未批准の米国は、米国の批准が必要とされるその他の国の批准を誘い条約発効への一歩になるであろうことを認識し、その立場を見直し、条約の批准に進むべきである。条約発効まで、すべての核保有国は引き続き核実験を繰り返すべきである。また、2007年のCTBT署名国会議は条約の暫定発効の可能性を検討すべきである。

勧告29
すべての署名国は、国際監視制度（IMS）、国際データセンター（IDC）、事務局を含めた検証体制の継続的な発展と運営に対して、資金面、政治面、技術面での支援を提供すべきである。これにより、包括的核実験禁止条約機関（CTBTO）を、条約発効の際に、条約遵守の監視・検証を即座に開始できる態勢に置くことが可能となる。署名国はそれぞれの施設を整備し、いかなる状況においても国家ベースでデータ送付を継続することを誓約しなければならない。

核兵器の規制から非合法化へ
勧告30
すべての核保有国は、核兵器なしでの安全保障に向けた計画策定に着手すべきである。それらの国々は、核軍縮における定義、基準、透明性要件などを含む、実際的かつ段階的な共同措置を通じて、核兵器の非合法化に備え始めるべきである。

生物及び毒素兵器勧告31～36（略）
化学兵器勧告37～42（略）

大量破壊兵器の運搬手段、ミサイル防衛、宇宙における兵器
勧告43
ミサイル技術管理レジーム（MTCR）参加国は、関連物質および技術に関する輸出管理のより効果的な実施および拡大に向けた新たな努力を行うべきである。ハーグ行動規範の署名国は、その対象範囲を巡航ミサイルおよび無人航空機（UAV）を含むところにまで拡大すべきである。各国は、早期警戒システムによるミサイル発射に関するデータ交換についての米ロ・イニシアティブに基づき、多国間のデータ交換センターを設立すべきである。地域的および国際的な不拡散措置は、情報交換、発射通告、そして特定の品目や能力の制限または禁止を含むものでなければならない。

勧告44
各国は、ミサイルの脅威の除去に関する交渉を先ず試みることなく、いかなるミサイル防衛システムの配備やさらなる配備を検討すべきではない。交渉失敗の場合、当該システムの配備は、軍備競争の発生や激化の危険性といった、国際の平和と安全に対する否定的影響を低減するために、共同開発計画や信頼醸成
付録

措置を伴うものとすべきである。

勧告45
すべての国家は、大気圏外における兵器の配備を放棄すべきである。各国は、宇宙条約の普遍的持続を促進するとともに、宇宙におけるあらゆる兵器の禁止をうたった議定書をもってその対象範囲を拡大すべきである。そのような議定書の締結までの間、各国は、宇宙プラットフォームからの宇宙空間の物体または地上的標的に対するあらゆる実験を含む、その目的に反するような行動を慎むべきである。各国は、宇宙問題に関する国際体制や制度を、軍民両方の側面が同じ支脈で扱われるように適応させるべきである。また、各国は、宇宙の安全保障体制および行動規範――とりわけ宇宙兵器の実験や配備の禁止をうたったもの――の様々な部分を監視・検証する諸策の開発を行う専門家集団を立ち上げるべきである。

勧告46
2007年には、宇宙条約の発効から40年の節目の再検討会議が開催されるべきである。会議では、条約強化および対象範囲拡大の必要性が議題となるべきである。批准を促すとともに、条約に基づく宇宙安全保障体制の強化について未署名・未批准国とのパイプ役となる特別コーディネーターが任命されるべきである。

輸出管理、国際支援、非政府主体

勧告47
すべての国は、効果的な任務遂行を保証すべく、それぞれの国における輸出管理の執行機関（税関、警察、沿岸警備隊、国境管理、軍隊）に対する監査を行うべきである。各国は、基準の一貫、透明性の強化、実施における具体的支援などを提供しつつ、輸出管理の普遍的システムの確立を目指していくべきである。5つの輸出管理レジームの参加国は、参加国の拡大促進に努めるとともに、法に則った貿易および経済発展を阻害することなく、現在の安全保障環境における課題を考慮して、実施状況の改善に取り組むべきである。

勧告48
G8グローバル・パートナーシップは、不拡散支援における地理的・機能的対象範囲を拡大していくべきである。G8は、兵器級プルトニウム生産全廃（EWGPP）計画に対する全面的な財政支援を行うべきである。支援可能国は、すべての地域の国家が国連安保理決議1540を実施することが可能となるよう、いかなる技術的援助、訓練、設備、財政援助の提供が可能であるかを検討しなければならない。

勧告49
大量破壊兵器に関連した業務に従事している企業は、当該兵器の拡散防止に協力する能力および責任があり、また、国内、国際の義務の完全遵守や公共的透明性といった責任を果たしていることを立証することに利害関係を持っている。
貿易協会は、こうした目的に向かった努力を推進すべきである。

勧告50
国家、国際機関、専門団体は、適切な学術および産業団体に対し、大量破壊兵器関連分野における科学・研究に関する実施規範や行動規範を取り入れ、効果的な実施を行うよう奨励すべきである。

勧告51
大量破壊兵器を保有する国家の政府は、当該兵器の保有状況や削減・撤廃に向けた動きについて、完全かつ最新の情報を絶えず議会に報告しなければならない。議会は、そのような情報を積極的に求めていくとともに、大量破壊兵器問題に関する諸政策を立案していく責任を認識すべきである。大量破壊兵器問題において、議会間協力の強化が必要である。

勧告52
各国は、国際的な会合や会議における非政府組織(NGO)の積極的な参加を支援するとともに、情報を提供し、大量破壊兵器の分野におけるキャンペーンを支援すべきである。民間財団は、グローバルな大量破壊兵器の脅威の除去にとり組んでいるNGOに対する支援を十分に拡大すべきである。

勧告53
安全保障関連の課題にとり組んでいる組織は、2002年の「軍縮・不拡散教育に関する国連研究」を再考するとともに、そのような教育および情報に基づく市民討論を育て支援する方法を考慮すべきである。各国政府は、大量破壊兵器問題にとり組んでいる多国間組織での学生インターンシップへの助成を行うべきである。

遵守、検証、執行および国連の役割
勧告54
追加議定書を通して、国際原子力機関(IAEA)が採択した保障措置制度の強化が核不拡散条約(NPT)締約国に対する規範となるべきである。同時に、供給国は、核関連物資を含む契約において、受け入れ側がこの規範を受諾することを契約の条件とすべきである。

勧告55
各国政府は、それぞれの情報機関に対し、査察システムの独立性を阻害することなく関連情報を提供し、国際査察機関を支援するよう指示すべきである。

勧告56
国連安保理は、専門的な技術情報を提供したり、大量破壊兵器に関連する事項について勧告を行う小規模の下部機関を設置すべきである。安保理または事務総長の要求があるとき、その下部機関は訓練を積んだ最新の登録査察官を活用して、特別の現地査察や監視を実行すべきである。

勧告57
大量破壊兵器に関する国際法上の義務は執行されなければならない。国際的な
付 録

強制執行は、信頼性の高い調査と権限のある調査結果による法的義務不履行の判明があったのちのみ実行され得る。

勧告58
ジュネーブ軍縮会議の正常化のためには、その場に出席し投票を行う参加国の3分の2の特定多数決をもって作業計画の採択が可能となるべきである。その他の事務および手続き上の事項も、同様の要件のもとで決定されるべきである。

勧告59
国連総会は、周到な準備を経て、軍縮、不拡散、テロリストによる大量破壊兵器の使用に関する世界サミットを開催すべきである。この世界サミットは、国連軍縮機構の有効性および効率性の改善を目指した改革に関する議論と決定を行う場ともなるべきである。

勧告60
大量破壊兵器による脅威、それが現存の保有兵器、拡散、テロリストのいずれの問題と関連しているにせよ、国連安保理は、その脅威の削減と除去に向けて持つ潜在能力をいっそう活用していくべきである。大量破壊兵器を取得しないという義務からの離脱や不履行に関しても議論の時間が割かれるべきである。全加盟国に拘束力のある決定を下せるという国連憲章下の権限を活用し、安保理はとりわけ以下の事項を行うことができる。
・ 個々の国家に対し、有効かつ包括的な監視、査察、検証の受け入れを要求する。
・ 参加国に対し、特定の規則や措置のグローバルな履行を保証していくための法制定を要求する。
・ 最後の手段として、経済および軍事的な強制措置に訴えることを決定する。

国連改革によって安保理が今以上に国連加盟国の総意を示すものとなるまでのあいだは、拘束力のある決定に先立ち、その決定が国連加盟国に支持されており、また受け入れられ、尊重されていくであろうことが担保されるような効果的な協議が行われることが極めて重要である。

2 アナン国連事務総長（当時）のプリンストン大学における核兵器に関する演説（平成18年（2006年）11月28日） 【[□□]抜粋】

（前略）
講演の主要なテーマは、核兵器の危険性、そして核不拡散と核軍縮を同時に進めることで、その危険に立ち向かう差し迫った必要性である。私は、これら2つの目的——つまり核軍縮と不拡散——は密接不可分に結ばれていること、そして一方で前進するためには他方でも前進をとげなければならないことを主張したい。
おそらく今日の世界においてほとんど誰もが不安を感じているが、誰もが同じもの
付録E 核兵器廃絶に向けた提言

に不安を感じているわけではない。世界の異なった地域においては、異なった脅威がより切実である。

おそらく大多数の人は、貧困、環境汚染、伝染病など経済的、社会的な脅威に優先度を置くであろう。

国家間の対立を強調する人もいるだろう。内戦を含む内部的な対立もある。多くの人々が－特に「先進国」においては、しかしそれに限らず－現在彼らのリストの上位にテロリズムを置くかもしれない。

実際、これら全ての脅威は相互につながっている。そして、全ては国境を超えており、我々は、それら全てを扱うために共通の世界戦略を必要としている。そして、実際、各国政府は、国連や他の場所で、そのような戦略を実行するために協力しようとしている。ところが最も大きな脅威をもたらすにもかかわらず、対処する共通戦略が完全に欠如しているのが核兵器に関する領域である。

核を最大の脅威として捉える理由は3つある。

第1に、核兵器は、全人類の生存に関わる比類のない脅威である。第2に核不拡散体制が現在、信頼性において大きな危機に直面している。北朝鮮が核不拡散条約（以下NPT）から脱退した一方で、インド、イスラエル、パキスタンはNPTに一度も加わったことがない。イランの核計画の性格については少なくとも深刻な疑問がある。そして、これらは核兵器国がとっている不拡散へのケースバイケースのアプローチの正統性と信頼性への疑問を引き起こしている。第3にテロリズムによる核兵器取得の脅威がある中で、テロの激化が核兵器が使われるおそれを著しく高めている。

核兵器に焦点を当てる場合、これまた大量破壊兵器であり、国際条約で禁止されている化学、生物兵器の問題を縮小化するつもりはない。実際、テロリズムに関していても重要かつ準備が十分にできていない脅威－新たな思考を切実に必要としている脅威－は、おそらく彼らが生物兵器を使う脅威であろう。

しかし、核兵器はもちろん危険である。我々が広島と長崎の惨禍の実例から知っているように、一つの爆発さえ都市全体を破壊することができる。そして、今日それらの何倍も強力な核爆弾が存在している。これらは、全体として人類に対する無比の脅威をもたらしている。

40年前、核兵器の脅威は何としても避けねばならないとの理解の下で、世界のほとんど全ての国が集い、NPTに体現される中心取り引きを成立させた。

その条約は、本質的には、当時の核兵器国と残りの国際社会との契約であった。核兵器国は、非核兵器国を核兵器で脅かすことをしないと別の形で宣言しつつ、核兵器撤廃に誠意をもって交渉すること、核拡散を防ぐこと、原子力エネルギーの平和利用を容易にすることを約束した。それと引き替えに、他の国々は、核兵器を取得、あるいは製造せず、全ての核活動を国際原子力機関（以下、IAEA）の検証の下に置くと約束した。このように、NPTは、原子力エネルギーの平和利用に関する
付録

すべての国家の権利を一定の条件下で保障しつつ、核拡散を防ぎ、かつ核軍縮を進めるように設計されていた。

1970年の勃発からつい最近まで、NPTは世界的な安全保障の要であると広く認識されてきた。NPTは批判家たちの危機意識に満ちた予言を裏切るものであった。ジョン・F・ケネディが1960年代に予測したように、核兵器は、幾多の国々に広がることなかった。実際、核を保有した国の数より多くの国が、核への野望を放棄した。

とはいえ、近年、南アジア、朝鮮半島と中東での危機に対し、NPTをどう適用すべきかについて国際社会は同意することができず、また少数の条約参加国が核兵器能力を追求していると言われていることで、NPTは批判にさらされている。

2005年には2度、5月のNPT再検討会議と9月の世界サミットにおいて条約の基礎を強化するチャンスがあった。しかし、核不拡散と核軍縮のいずれが先かの問題に合意できず、両方とも失敗した。

主には核兵器国やその支持者である＜不拡散優先派＞は、主たる脅威は核兵器そのものだからではなく、核兵器を保有する者の性質から生じるのであって、従って新たな国や非国家主体への核兵器の拡散が脅威の主因だと信じている（いわゆる水平拡散）。核兵器国は、冷戦終結以来、相当な軍縮を実行してきたが、国際平和や安全保障に対する責任上、彼らは核抑制力を維持することが必要であると主張する。

一方、＜軍縮優先派＞は、世界は現存する核兵器と、その継続的な改良によって最も危険にさらされるとする（いわゆる「垂直拡散」）。非核兵器国の多くは、核兵器国に対し1995年NPT無期限延長の際の約束と2000年の約束から後退している。これらの国にとって、NPTの「中心取り引き」はまやかしになっている。＜軍縮優先派＞の国々は、国連安保理が大量破壊兵器を国際の平和と安全保障に脅威をたびたび表現してきた一方で、核兵器そのものがそういった脅威であると明言したことは一度もないと指摘する。（略）

この論争の両者は、どちらも、NPT枠外の4つの追加的な核保有国が存在するとは、彼らの立場を裏書きするものであると感じている。（略）

しかし、両方とも相手の行動を待っている。その結果、「相互確認破壊」は相互確認機能麻痺に取って代わられた。このことは、NPTの権威に対する団結の欠如と敬意の低下という悪いシグナルを送っている。それは、悪用され得る真空をつくりだす。

私は、今年始め、我々は「夢遊病にかかって破滅に向かって歩行している」と発言した。実際にはそれよりさらに悪く、高速で航行する航空機の操縦桿を握ったまま眠っているのである。起きて操縦しない限り、結果は火を見ることになる。もちろん、航空機は両翼が使用可能な場合だけ飛行を維持することができる。我々は核不拡散と核軍縮のどちらかを選ぶことはできない。我々は、緊急性を持って両方の
付録E 核兵器廃絶に向けた提言

仕事に取り組まなければならない。
　双方に次のことと言いたい。
　まず軍縮優先派に向けて：
　核拡散は核保有国だけに対する脅威ではないし、主として核保有国への脅威でもない。核兵器の引き金を引く指が増えるほど、その中には不安定な国家の指導者や非国家主体の指が増えるだろう。それに人類に対する脅威は拡大する。
　軍縮の進展の欠如は核拡散の脅威に対処しないことの言い訳にはならない。核兵器計画を推し進めながら、NPTの擁護者のふりができると考えてはならない。いわんや他国に軍縮を説得できるはずがない。
　NPTを一貫的に遵守する有力国の中に、核兵器国が軍縮義務を果たしていないと強く感じている国があることを私は知っている。しかし、その慣性が拡散を利することのないよう注意すべきである。禁止された兵器を保有することは決してそれを廃棄させよとの主張には役立たないということを明確に宣言すべきである。拡散は、軍縮をなし遂げることをより難しくするだけである。
　私は全ての国に正当な評価を与えるに値かであってはならないと促したい。軍縮されたときはいつでもそれを認めよう。核兵器国が、一方的であれ、また交渉によってであれ、核兵器を削減し、拡張を阻止する動きをとったときには拍手しよう。核兵器国が新たな兵器用核分裂性物質の生産を事実上停止したり、核実験のモラトリアムを維持していることを評価しよう。
　同様に、大量破壊兵器の製造に必要な商品の輸出管理を改善する国連安全保障理事会決議1540で規定された努力のような、たとえ小さな措置であっても核拡散を防止する措置を支持すべきである。
　そして民生用核計画の核燃料及びサービスへのアクセスをすべての国に保証しながらも、核燃料サイクルのなかの核兵器製造につながる機微な技術の拡散を阻止する方法を見出そうとしているIAEA事務局長の努力を支持してほしい。国家は、核計画を通じて、成長するエネルギー需要に対応できることが必要であるとしても、もっと多くの国が、核燃料サイクルの最も機微な段階を自分で開発するような世界を許容することは、我々にはできないであろう。
　最後に、核兵器廃絶や核拡散防止のためのイニシアティブの履行を、他の問題における各国の譲歩を条件にするような振る舞いを勇気づけたり許容したりしてはならない。（略）
　核不拡散優先派に向けて：
　たしかに冷戦後の大軍縮の進展はあった。いくらかの国では、配備されていた核兵器は減ったし、全廃された種類の核兵器もある。米国は戦略核兵器の配備数を制限し、艦船から非戦略核を除去した。米議会は「バンカーバスター」予算を拒否し、大部分の核実験場は閉鎖され、核実験のモラトリアムが続いている。フランス、ロシアと国はCTBTを批准した。
付 録

しかし、核問題は、驚くほど高いレベルで残っている。まだ2万7千発もの核兵器
が使用可能で、うち約1万2千発は実戦配備されていると報告されている。

核兵器の数は減らしてよいが、より小型で使用可能なものが必要であると考えたり、
紛争に実際に使用することなくにした国がある。全ての核兵器国は核兵器及び
原爆と核兵器を近代化している。これがNPTと両立するものとして受け入れられている
と考えてはならない。（略）

これらの国が、NPTの枠外の4つ核兵器能力を有する国に如何に対処しようと
しているのか明らかでない。どれかの国が核兵器能力を獲得することを計画したときの
ドミノ効果を彼らは警戒する。しかし、それをいかに防ぎ、実際に起こった際にいか
に対処するかの方法が分からないように見える。彼らは、少なくとも逆ドミノ効果の試
みを検討すべきである。つまり、核兵器を系統的かつ継続的に削減し、核兵器の通
貨価値を引き下げ、他の国がその例にならうようしめるべきである。

逆に、核兵器国は、国家安全保障に明白な脅威がないときにも核兵器に拘泥し、
近代化することによって、他の国々、とりわけ自国の地域で本当の脅威に直面する
国が、彼らの安全と地位にとって核兵器が必要であると考えるようにしめている。
核兵器の存在そのものが危険であり、究極的に不法であると普遍的に認識されてい
るならば、拡散者と向かい合うことは、より簡単であるであろう。

同様に、他国に核実験やミサイル実験を行わないよう主張する国は、CTBTを
発効させ、自国のミサイル実験を停止し、ミサイル規制の強力な多国間条約の交渉
を遂めるほうが、ずっと説得力がある。そのようなステップは、不拡散の主張を前進さ
せるために他の何よりも効果がある。（略）

最後に、多くの国の政府と市民社会は、非国家主体からの脅威が増加し
ている今日において、核抑止という戦争時代の教義はますます通用しなくなってい
ると考えている。そうではなくて、我々は核拡散を防ぐ別の共通の戦略を開発する
必要があるのではないか。

こうした理由から、私は、核兵器を保有する全ての国に対し、核軍縮の誓約を履
行する特定されたタイムテーブルを伴った具体的な実行計画を立案するよう呼びか
ける。そして私は、厳密で効果的な国際管理の下において全ての核兵器の前進的
な開発を達成する意志を表明する共同宣言を発するよう、すべての核保有国に要
請する。

要約すれば、唯一の進むべき道は核不拡散と核軍縮の対策につき同時に進展
させることである。これは、テロの脅威に効果的に対処するのみならず、実際のもの
であれ修辞上のものであれ、特定の国や政府を核兵器の開発や獲得によって安全
保障を図ろうとする——それがいかに誤った考えであるにせよ——原因となってい
る脅威に同時に効果的に対処することなしには達成しないであろう。

これは複雑で気を失さない課題である。指導力と信頼の確立、対話と交渉が必要
である。しかし、気持ちを一新した討論、包括的であり、国際交渉の規範を尊重
し、多国間のアプローチを再確認するような討論を開始しなければならない。
（後略）

3 核兵器のない世界を[] (抜粋)
ジョージ・シュルツ1, ウィリアム・ベリー2, ヘンリー・キッシンジャー3, サム・ナン4
平成19年（2007年）1月4日、ウォール・ストリート・ジャーナル紙

今日の核兵器はすさまじい危険を呈しているが、それは同時に歴史的な機会を
もたらしている。米国の指導者たちは、世界を新段階へと導くよう求められている。
すなわち、潜在的危険を容認するための核拡散を抑制し、究極的には世界の核兵器を
ある核兵器の存在に終止符を打つための決定的な貢献として、核兵器依存の世界
的な中止に向かって確固たるコンセンサスへと導くことである。

冷戦時代においては、核兵器は、抑制の手段として、国家安全保障の維持に不
可欠なものであった。しかし冷戦の終焉によって、ソビエト連邦とアメリカ合衆国のあ
いだの相互抑制という教義は時代遅れのものになった。抑制は、他の国家による脅
威という文脈においては、多くの国にとって依然として十分な考慮に値するものと
されているが、このような目的のために核兵器に依存することは、ますます危険に
なっており、その有効性は低減する一方である。

北朝鮮の最近の核実験や、イランの（兵器級まで濃縮の可能性もある）ウラン濃
縮計画の中止拒否などによって、世界がいま、新たな、そして危険な核時代のか
けっぷちに立っているという事実が浮き彫りとなった。最も警戒を要することは、非国
家テロリスト団体が核兵器を手にする可能性が増大しているということである。今
日、テロリストによって引き起こされる世界秩序に対する戦争においては、核兵器の
使用は大規模な惨禍を招く究極的な手段である。そして、核兵器を手にした非国家
のテロリスト団体は、概念上、抑制戦略の枠外にあり、そのことが解決困難な新しい
安全保障上の課題を生み出している。

テロリストによる脅威を別としても、緊急に新たな行動を起こさなければ、アメリカ
合衆国は新たな核時代へと突き進むことを余儀なくされるであろう。それは、冷戦時
代の抑止よりもいっそう不安定で、心理的な混乱を生み、経済的コストの高いもので
ある。核兵器を所持し得る敵が世界中でその数を増す中で、核兵器使用の危険性
を劇的に増大させることなく、かつての米ソ間の「相互確証破壊（MAD）」を再現し

1 昭和57年（1982年）から平成元年（1989年）まで米国務長官。スタンフォード大学フー
バー研究所特別研究員。
2 平成6年（1994年）から平成9年（1997年）まで米国防長官。
3 キッシンジャー・アソシエイツ会長。昭和48年（1973年）から昭和52年（1977年）まで国務
長官。
4 元米上院軍事委員会委員長。
で成功するかどうかは極めて疑わしい。

核兵器によって引き起こされる不測の事態や判断ミス、または無許可使用を回避する目的で、冷戦時代には段階的な防衛措置が有効に働いていた。しかし、新たな核保有国はこうした長年の経験による利益を得ることはないだろう。アメリカ合衆国やソビエト連邦は、結果的には致命的とはならなかった数々の過ちから様々なことを学んだ。両国は、意図的にしろ、偶発的にしろ、核兵器が一発も使用されることのないよう、冷戦時代に絶え間ない努力を積み重ねてきた。今後50年間、新たな核保有国にとって、そして世界にとって、冷戦時代のこのような幸運は望めるのだろうか。

（略）

核不拡散条約（NPT）が描くものは、全ての核兵器の廃絶である。この条約は、(a) 1967年の時点で核兵器を保有していない国家が核兵器を取得しないことに合意すること、及び(b) 核兵器を保有している国家は、それを後々放棄することに合意することを定めている。リチャード・ニクソン米大統領当時の民主・共和両党の大統領は全員、この条約下の義務を再確認してきたが、非核兵器国は、核大国がどれほど条約の規定を誠実に遵守しているか、ますます懐疑的になってきた。

核不拡散を推進する強力な取組が進行中である、「協調的脅威削減（CTR）プログラム」、「地球的規模脅威削減イニシアティブ（GTRI）」、「拡散防止構想（PSI）」、そして国際原子力機関（IAEA）追加議定書などの取り決めは、NPT違反や世界の安全を危機にさらすような行いを探知する強力な新しい手段を提供する革新的なアプローチである。これらの取り決めは完全に履行されるべきものである。北朝鮮やイランによる核兵器拡散問題に対し、国連安全保障理事会の常任理事国に加え、ドイツ・日本を巻き込んだ交渉を行うことが極めて重要である。これらの手段を精神的に追求することを行わなければならない。

しかしながら、これだけでは、危機に対応する十分な措置とはいいえない。レーガン大統領とブルバチョフ書記長は、20年前のレイキャビクの会談において、核兵器の完全廃絶という、より大きな目標の達成を目指した。彼らのビジョンは、核拡散防義を信奉する専門家の度肝を抜いたが、世界中の人々の期待を膨らませるものであった。最大数の核兵器を保有する両国の指導者たちが、最も破壊力のある武器を廃絶しようと、議論を始めたのであるから。

では、どのような手段がとるべきだろうか。NPTにおいて取り交わされた約束や、レイキャビクで構想された可能性は結実することとなるのだろうか。堅実な段階を経て、めざす答えに行き着くためには、アメリカ合衆国が先導して最大限の努力を行うことが必要である、と私たちは確信している。

何よりもまず、核兵器を所持している国々の指導者たちが、核兵器なし世界を創造するという目標を、共同の事業に変えていく集約的な取組が必要である。このような共同事業は、核保有国の体質変化を生み出すことになるが、それによって、北朝
付録E 核兵器廃絶に向けた提言

鮮やイランが核武装国となることを阻止しようという現在進行中の努力にいっそうの重みが加えられることとなるだろう。

合意を目指すべき計画は、核による脅威のない世界を実現するための基礎作業となる、一連の合意された緊急措置で構成されるだろう。そのような措置には、次のようなものが挙げられる。

※警報時間を長くし、それによって核兵器が発動的に使用されたり、無許可で使用されたりする危険性を減らすように、配備核兵器の冷戦時代の態勢を変えること。
※すべての核保有国が核戦力の相当の削減を継続的に行うこと。
※前進配備のために設計された短射程核兵器を廃棄すること。
※近代的技術的な進歩を活用し、他の重要な国家も確実にCTBTを批准するよう働きかけ、包括的核実験禁止条約（CTBT）の批准を達成するために、上院と協力して超党派プロセスを始めること。信頼を深める定期的な審議の場を設ける合意を得るなどのプロセスがある。
※世界中のすべての兵器、兵器利用可能なプルトニウム、および高濃縮ウランの備蓄を対象にした安全基準値をできるだけ高く設定すること。
※ウラン濃縮過程を管理下に置くこと。その際、原子炉で使用されるウランが、まず原子力供給国グループ（NSG）を通じて、次に国際原子力機関（IAEA）やその他の国際的に管理された備蓄から、相応の価格で入手できるという保証が伴うべきである。また、発電用の原子炉で発生する使用済み核燃料が原因となって生じる核拡散の問題に対応することも必要である。
※兵器用核分裂性物質の生産を地球規模で中止すること。民間レベルでの高濃縮ウランの使用を段階的に廃止してゆくこと。世界中の研究施設から兵器利用可能なウランを除去すること、核分裂性物質を安全管理すること。
※新たな核保有国の出現を許してしまうような、地域での対立や紛争の解決に向けた私たちの努力を倍加させること。

核兵器のない世界という目標を達成するためには、いかなる国家や人々の安全をも脅かす可能性のあるあらゆる核関連行為を防止し、それらに立ち向かう、効果的な措置を講じる必要がある。

核兵器のない世界というビジョン、ならびにそのような目標の達成に向かう実際的な措置を再び世に訴えることは、アメリカの道徳的遺産と一致した力強いイニシアティブとなるであろうし、またそのようなものと受け止められるであろう。このような努力を積み重ねれば、次世代の安全保障に極めて前向きな影響を与えることができるであろう。大胆なビジョンなくては、これらの行動が正しいことも、緊急であることを理解されないだろう。逆に、行動なくては、このビジョンは、現実的であるとも実現可能性
付録

であるとも思われないことであろう。

私たちは、核兵器のない世界を実現するという目標を立て、その目的の達成に求められる行動を精力的に起こすことを支支持する。その際、上記のような措置をとることからまず始めなければならないのである。
索 引

あ
アルファ線・2, 13, 14, 15, 41, 44

い
1分以降への対応・44, 45

え
影響範囲・26, 27, 28, 29, 36, 37, 38, 39, 109

お
屋内退避・39, 40, 45, 46, 48, 53, 60, 64

か
外部(体外)被曝・14, 44, 53, 55
火球・13, 18, 19, 20, 24, 26, 27, 29, 32, 105, 106, 110, 117, 118, 128, 129
拡散範囲・32, 33, 34, 39, 46, 47, 48
核態度見直し・4, 6
核電磁パルス強化兵器・21
核パンカーバスター・6, 12, 18
核不拡散条約(NPT)・3, 4, 5, 10, 65, 130, 131, 133, 134, 137, 139, 140, 141, 142, 144
核分裂生成物・13, 14, 15, 31, 32, 89, 119, 120, 121, 122, 123, 124
核兵器禁止条約(NWC)・65
核兵器攻撃災害への対処・50

け
原子爆弾(原爆)・1, 2, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 31, 64, 78, 89, 91, 92, 93, 94, 95, 101, 105, 106, 111, 119, 120, 121, 122, 123, 124

こ
後障害・16, 17, 35, 40, 43, 63, 64, 92, 93, 102, 104, 105, 109, 110, 111, 113, 114

火事廃・20, 30, 51, 102
過剩発症・35, 92, 102, 104, 105, 109, 110, 113, 114
cal(カロリー)・2
ガンマ線・2, 12, 13, 14, 15, 20, 24, 33, 34, 40, 41, 42, 44, 92, 109, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124

kt(キロトン)・2
急性放射線症・15, 16, 17, 53, 54, 60, 62, 106, 111
行政機関等の対応・46

Gy(グレイ)・2
黒い雨・14, 24, 31, 36, 45, 60

国際原子力機関（IAEA）・3, 41, 130, 131, 132, 134, 137, 139, 141, 144, 145
国際司法裁判所（ICJ）・65
国民保護協議会・1
国民保護計画・1, 51
国民保護法・1, 51, 54, 55, 58
水素爆弾（水爆）・11, 12, 13, 25, 92

せ
精神的影響・22
閃光（ビカ）・13, 20, 24, 26, 28, 29, 35, 36, 44, 48
染色体異常（数）・15, 31

た
大量破壊兵器・7, 9, 65, 130, 131, 135, 136, 137, 138, 139, 140, 141

ち
中性子（線）・2, 11, 12, 13, 14, 24, 31, 32, 48, 89, 92, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
中性子爆弾・12

て
テロ（リズム・リスト）・7, 10, 12, 25, 43, 51, 86, 132, 138, 139, 142, 143
電磁パルス・13, 20, 21, 22, 48, 51, 55, 58, 59
電離放射線・13

と
統合核作戦教義・6, 7
トリアージ・47, 62

す
推計死傷者数・35, 37, 38, 93, 101, 105, 108, 113

148
な
内部(体内)被曝・14, 15, 16, 44, 55

ね
熱傷・20, 28, 29, 41, 43, 47, 62, 92, 93, 95, 96, 102, 103, 106
熱線・12, 13, 19, 20, 21, 22, 28, 29, 30, 36, 44, 51, 52, 58, 63, 78, 89, 90, 91, 92, 93, 96, 102, 106, 108, 110, 111, 113, 115, 125, 126, 127, 128, 129

は

ひ
被害(の)軽減・43, 45, 50, 51, 56, 57, 64
非核兵器地帯・4, 131
非国家主体・3, 5, 8, 9, 10, 140, 141, 142
避難・22, 24, 31, 36, 39, 40, 41, 42, 44, 45, 46, 47, 48, 53, 58, 59, 60, 61, 62, 64, 109

へ
ベータ線・2, 13, 14, 15, 40, 41, 44, 119, 120, 121, 122, 123, 124
Pa(パスカル)・2

ほ
包括的核実験禁止条約(CTBT)・66, 130, 132, 134, 135, 141, 142, 145
放射性降下物・14, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 59, 60, 109, 110, 113, 114, 119, 120, 121, 122, 123, 124
放射性物質・6, 14, 15, 16, 31, 32, 36, 40, 41, 42, 45, 47, 48, 51, 55, 62, 132
放射線の人体(身体)影響・16, 17
放射線被曝線量の推定・15
psi(1平ガインチ当たりの重量ポンド)・2

み
未分裂の核物質・14, 15, 31

め
Mt(メガトン)・2

よ
抑止・4, 5, 6, 10, 12, 64, 140, 142, 143, 144
4つの核兵器攻撃・25

り
流言飛語・21, 22

れ
劣化ウラン弾・11